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Abstract (cont'd.)

knowledge about graphic displays. We report on a design for a new proto-
type natural language understanding system, on issues in cascaded archi-
tectures for interaction among the components of a language system, and on
a module for Lexical acquisition. In addition, we examine three topics
in discourse: a new model of speaker meaning, which extends our previous
work on speakers' intentions, an investigation of reference planning and
identification, and a theory of "one"-anaphora interpretation. Our dis-
cussion of abstract parallel machines reports on a class of algorithms that
approximate Quillian's [49] ideas on the function of human memory.
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1. INTRODUCTION

Bolt Beranek and Newman Inc.'s (BBN's) ARPA project in

Knowledge Representation for Natural Language Understanding is

developing techniques for computer assistance to a decision maker

who is collecting information about and making choices in a

complex system or situation. In particular, we are designing a

system with natural language control of an intelligent graphics

display of the kind that can be used in a command and control

context, both in strategic situation assessment and in more

tactical situations. We believe that the commander needs an

extremely flexible system, capable of manipulating large amounts

of data and presenting them on a graphical display in a variety

of ways until the commander feels satisfied that he has a grasp

of the situation. Such a system would be able to

o display many kinds of different map overlays

o change the kinds and amounts of detail shown

o construct unique kinds of displays to suit the situation
at hand

o display tabular and graphical information and present
textual material in ways that are easily comprehensible.

t

Techniques to produce such displays on demand, in response

to high-level specifications of what they should contain, require

significant breakthroughs in areas of language understanding,

knowledge representation, and knowledge-based inference. Our

work falls into three classes, motivated by the goal of providing

powerful computer assistance to a commander in a complex

i1
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decision-making task. These areas are: fluent natural language

understanding in a graphics context (including intelligent,

helpful systems that go beyond mere passive execution vf literal

instructions), fundamental problems of knowledge representation

and use, and abstract parallel algorithms for knowledge-based

inferential operations.

The major accomplishment of our work so far is the

development of the knowledge representation system KL-ONE.

Another accomplishment is a prototype display system that

understands requests, and some assertions, about display

manipulation. The language understanding prototype is based on

several general tools, including the RUS parser, a lexical

acquisition system, the PSI-KL-ONE interface, and a model of a

speaker-meaning recognizer. In addition, we have pursued

research on an abstract parallel machine for marker passing and

on implementations of knowledge-based inference algorithms.

In the natural language understanding (NLU) system, the KL-

ONE knowledge representation system has been used to represent

the results of syntactic analysis, to organize the semantic

interpretation rules used to interpret sentences (in the PSI-

Klone interface), to organize models of the user's plans and

goals (in the speaker meaning recognizer), to specify the

information in the domain knowledge base, and to codify the rules

needed for drawing pictures on the graphic display. The

knowledge-structuring capabilities of the KL-ONE system have

2
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proven themselves very powerful in this system, and the extent to

which the same structures have proven useful in qualitatively

different parts of the system gives evidence of the robustness of

these capabilities.

The tools we have been researching and building have been

used not only in our own work but in the ARPA-sponsored CONSUL

group at Information Sciences Institute (ISI). We have provided

them with versions of the RUS parsing system and the KL-ONE

knowledge representation system. We expect that the lexical

acquisition system will soon be available for their use as well.

Knowledge representation problems arising out of that work have

been important in our new work on KL-ONE, and the interaction of

the two groups has benefited both. We continue also to cooperate

with the ARPA-supported AIPs project [28] at BBN, which is using

KL-ONE. Other uses of KL-ONE are discussed in an upcoming

subsection on the KL-ONE community. Versions of the RUS parser

are also currently in use at the General Motors Research Lab and

by the medical decision-making group at the National Library of

Medicine.

In this report, we describe the research investigations we

have accomplished in the three main areas we are pursuing -

parallel algorithms, representation research on KL-ONE, and

natural language research. Chapter 2 first updates our 1979

report [13] by discussing extensions and changes in the system

since that time. In Chapter 3 we present an overview of the

3
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Natural Language system, followed by two chapters on specific

parts of that system. One chapter, on the PSI-Klone interface,

contains a discussion of changes and extensions to RUS and PSI-

KL-ONE. It also presents our new work on a lexical acquisition

system. The other chapter contains a discussion of our work on

issues related to discourse, primarily research on models of

speaker meaning, on reference as a planned act and on one-

anaphora. The final chapter presents research on the development

of algorithms for abstract parallel machines. To conclude, we

give a summary of the research papers we have written and

presented on our work.

4
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2. A REPORT ON KL-ONE

2.1 KL-ONE Overview and Philosophy

by R. J. Brachman and D. J. Israel

KL-ONE is the underlying representational formalism for the

Natural Language Understanding System being designed and

implemented at BBN. It is a semantic net formalism based on the

ideas of structured inheritance networks and, correlatively, of

complex, structured concepts. In this brief overview, we shall

confine ourselves chiefly to the second of the above two leading

themes in the philosophy behind KL-ONE. (For a more general

introduction, see Brachman's "An Introduction to KL-ONE" in [13].

See also [8], [91, [10]). In the following sections, we shall

only briefly note the most important ways in which the current

version of KL-ONE differs from the system described in that

earlier annual report. KL-ONE was originally designed by

R. Brachman; R. Brachman and D. Israel completed the work

discussed here, with contributions from R. Bobrow, J. Schmolze,

and B. Woods.

There is now a large number of semantic-net formalisms; the

designers of most of these have been heavily influenced by

Minsky's conception of "frames" [38]. Almost uniquely, the

semantics of KL-ONE is not frame-based. (But see also [601,

[57], [18], [581.) Indeed, it is crucial to a correct

understanding of KL-ONE that the differences between it and

5



Bolt Beranek and Newman Inc. Report No. 4785

standard frame-based networks be kept in mind. More

particularly, it is crucial that the reader understand our

reasons for being dissatisfied with such frame-based systems.

2.1.1 Background: Knowledge Representation

Before contrasting KL-ONE with other semantic net

formalisms, it is perhaps advisable to set this comparison within

the broader context of current work in knowledge representation,

especially given the enormous and enormously confusing variety of

work being done under that rubric in AI. Alan Newell, in his 1980

AAAI Presidential Address, commenting on the SIGART Special Issue

in Knowledge Representation ( [15]), notes that

The main result was overwhelming diversity - a
veritable jungle of opinions. There is no consensus on
any question of substance. Brachman and Smith themselves
highlight this throughout the issue, for it came as a
major surprise to them. Many (but of course not all!)
respondents felt the same way... What is so overwhelming
about the diversity is that it defies characterization...
But there is no tidy space of underlying issues in which
respondents, and hence the field, can be plotted to
reveal a pattern of concerns or issues.

[40] We shall here attempt to provide a brief guide through some

of this jungle of distinguishing the very different kinds of

activities within the field of knowledge representation.

The first distinction that must be observed iR between

representational formalisms or languages and tools for building

such formalisms. At the most abstract level, work done on various

aspects of various dialects of LISP - for example, efforts to

6
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accommodate abstract data types more naturally - can be seen as

aimed toward the design of tools for representational-formalism-

implementors; but though many (indeed most) such formalisms are

in fact embedded in LISP, very few (and perhaps no) researchers

in the field think of LISP as a representation language. On a

more concrete level are tools for building representational

systems that are meant to be independent of the choice of

programming language. We would classify RLL 129] and also,

though more tentatively, MRS 127] as belonging in this category.

There is an analogy between this kind of research and the work

done on developing tools for building expert systems, tools which

need not themselves take the form of expert systems.

When we move over to representational languages proper,

there is a major dichotomy between those designed, first and

foremost, to accord with some explicitly articulated semantic

theory meant to provide a standard of correctness for the

implemented interpreter of the formalism and, on the other hand,

those which eschew such theories (again more or less explicitly).

[Needless to say, this dichotomy is somewhat controversial.]

Among the languages that eschew semantic theories, there is

another important dichotomy - between those whose design is

motivated and guided by some account of human psychology, in

particular of human cognitive processing, and those for which

there is no theory independent of the design, to which the system

is supposed to be faithful. The original work in semantic nets

of Quillian ( [48], [49]) and Collins and Quillian ([511) was

7
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explicitly driven by the desire to produce a model for certain

observed psychological regularities - in particular regularities

of access and retrieval from long-term memory. (See [341.) One

could argue that the most ambitious project in this vein was KRL

[7]. On the other hand, systems such as FRL (53] and [64) were

not designed to "simulateo natural cognitive processes; rather

once their access, retrieval, and data structure-manipulating

operations are specified, there is no further question of whether

those are the right operations. Such systems can be judged as

good or bad along various dimensions; but there is no independent

account of any domain, other than the explicitly computational,

that they are meant to capture.

Finally, among those representational systems meant to

embody in a computationally tractable way some theory of meaning

(some semantic account for the constituent language), there is

yet again a distinction. First are those whose language is

specified to be of a standard quantificational sort (usually

first-order) in its standard syntactic clothing and, most

important, with its standard Tarski-style model-theoretic

semantics. (The role of the model-theoretic semantics is central

here. Typically, the system's interpreter is a theorem-prover

that realizes a sound, and perhaps complete, proof-procedure for

the language arding to t=hat particular naantci account. For

more on this topic, see (341.) On the other hand, there are now

a number of representational formalisms whose constituent data

structures are graph-theoretic and whose basic operations are

8
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I
graph-oriented. The semantic theories of such formalisms need

not be identical with the classical model-theoretic account of

jquantificational formalisms, especially first-order formalisms.

Within this group, we would place MANTIQ [63], NETL [241 (though

this is a mixed case owing to the importance of a certain range

of psychological considerations in the background of its design),

Shapiro's SNePS [60], the systems of Schubert (57] and Schubert,

Cercone and Goebel [58], and KL-ONE.

2.1.2 Frames

Let's assume that we are talking about a typical

representation scheme based on the notions of frame-like

conceptual units and slot-like role descriptions, or their

equivalents, and a hierarchy for passing properties from general

to specific conceptual units. The principal connective

(typically "ISA") makes one conceptual unit a subcategorization

of another. The "inheritance of properties" (or the notion of

"virtual copy") in such a scheme means that subconcepts inherit

all of the features of their parent concepts.

Consider the simple frame/concept ELEPHANT, which we might

portray as in Figure 1. The knowledge representation literature

tells us that elephants are mammals, that they are gray, and that

they have four legs. So we would see an "ISA" connection between

the concept ELEPHANT (the ellipse labeled as such in the figure)

and the concept MAMMAL, with a role description (or with four

descriptions, perhaps) on ELEPHANT signifying that the number of

9
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MAMMAL

ELEPHANT
isa: MAMMAL "color"
slots isa slot GRAY

(color GRAY
(legs
(cardinality ELEPHANT

4) so E-F
SET-OF-LEGS LG

care nality

4

FIG. 1. A SIMPLE FRAME FOR "ELEPHANT"

legs on an elephant is 4, and a filled-in role description saying

that the color of an elephant is gray (the role descriptions, or

slots, are pictured as small squares). One might be tempted to

an informal reading of this as "an ELEPHANT is a MAMMAL that has

four legs and whose color is gray," and, implicitly, "every

ELEPHANT is a MAMMAL that has ...

2.1.3 Is nothing sacred?

The principal inference mechanism in these representation

systems is "inheritance of properties". It usually runs

something like this: if Clyde is asserted to be an elephant by

some version of an "ISA" connection from CLYDE to ELEPHANT, then

the node CLYDE would act as if it were a copy of the entire

10
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structure at the ELEPHANT node. This being the case, we could

conclude that Clyde is a mammal, the value of his color attribute

is gray, and he has four legs.

Since these attributes accrue to Clyde in virtue of his

being an elephant, slots (as well as inherited ISA links) seem to

correspond to the consequents of if-then statements. If you fit

the prototype, then you get the properties. One doesn't check

the properties first to see if there is an instance of a frame;

rather, properties expressed by slots follow from instantiation

of the frame. This interpretation is substantiated in various

places in the literature. Charniak [19] proposes a combination

of frames and predicate calculus notation in which he translates

a frame into a universal statement, with "implicit existentials"

for the slots. For example, Charniak might translate the frame

[elephant
isa: (mammal ?elephant)
slots: (head (elephant-head ?head))
facts: (has-part ?elephant ?head) ...]

into
FORALL (?e (elephant ?e))

EXISTS (?h (elephant-head ?h))
[has-part ?e ?h] ...

In a similar vein, Hayes ( [33]) interprets the slots of

frames as the right-hand sides of conditionals. In his view, the

frame represents implicitly universally quantified conditionals.

For example, "a frame representing the concept C, with slot-

relationships R ,...,R becomes the following (expressed in
1 N

clausal form, without Hayes' criteriality assumption):

Ii 11
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Vx C(x) R (x, f Wx)
1 1

& Vx C(x) R (x, f Wx)
2 2

&

But niot all instances of a concept like ELEPHANT need have

the feat-ures specified there. For example, it is quite

conceiva",7p that we might run across some poor elephant that had

only three legs (perhaps an unfortunate veteran of the Punic

Wars). To handle exceptions like three-legged elephants, some

notations allow the "cancellation" of properties that a

particular concept would normally inherit. So the intuitive

reading of the ELEPHANT frame as including "every elephant has

four lg"is not quite right. Rather, it should be that

typically (in the sense of a default) elephants have those

properties. Thus, as Fahiman puts it, "I am using a weak sense

of the word 'every' here: I mean that the property is true of

every elephant for which it is not explicitly cancelled" ( [24]

p. 16). Indeed, Fahlman has gone so far as to call his node

"TYPICAL- ELEPHANT".

Now, this interpretation would not be too bad if one were to

believe that a frame "is intended to represent a 'stereotypical

situation'" ( [24], p. 48). We just have to keep in mind that

any notation that allows us to represent exceptions by cancelling

properties that would normally be inherited must be using its

12
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conceptual units in this sense. (The concept of an X is really

Ithe concept of a typical X.)

INotice that the implied sense of "typically" here is

strictly along the lines of "'in the absence of any information

! to the contrary, assume ...'" ( [24], p. 210), and has nothing to

Ido with frequency of occurrence. In some dialects, "typically"

is more closely synonymous with "usually". In the manner used in

frame notations, however, a "typical" property could be violated

in every single case! We do not treat the "usually" issue

further, but merely note that it is yet another type of adverb of

quantification that we might like to express.

I2.1.4 Universal statements

One consequence of the default interpretation of concepts is

Ithat the slot notation for properties cannot be used, without

j alteration, to make an unequivocal universal statement (since we

hedged on the "every"). And we certainly want to be able to make

exceptionless universal statements, since there are many domains

and situations where properties do hold for all instances of

certain kinds.

SFor example, all banks in Massachusetts happen to be closed

on Sunday. It would be most convenient to represent this

contingent universal fact with a single statement. One might

suppose that we could use the default notation as it stands, and

examine the set of instances to see if a concept represented a

13
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true universal. But this procedure would only be useful in

knowledge bases where the information was expected to be

complete. (See 152] for more on the "closed world assumption",

*which presumes "perfect knowledge about the domain being

modeled"). And even then, checking all instances could be very

costly.

At least one Oproto-net" author has suggested a way to

represent exceptionless properties explicitly: 0 ... some fact [can

be declared] sacred (uncancellable) and therefore true of all

elephants without exception" ( [241, p. 16). But without such an

augmentation, no notation that allows cancellation of properties

can express universal truths.

Even if we admit "sacred" properties as a way to express

universals, we are still missing a distinction. Notice that

Massachusetts banks being closed on Sundays is a matter of

(contingent) fact; it just happens to be the case at the current

time. In this instance, we implicitly understand the possibility

of things being otherwise. There is an important distinction

between statements of contingent universal fact and necessary

truths. A "sacred" statement, which says there are no

exceptions, is different from one that says there can't be any

exceptions.

Given the previous observation that slots express material

conditionals, it seems reasonable that necessary properties might

be expressed by representing the necessity of those conditionals

14 _ _ _ _
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-i.e., with valid statements rather than just true ones, though

as far as we know, this is not generally done. In any event,one

can't have one's cake and eat it, too: one's slot notation per se

must mean one thing or the other.

2.1.5 Sufficiency and composite concepts

We must also distinguish those necessary truths whose

necessity rests on definitional equivalence from those whose

necessity is, in a sense to be explained, primitive. Contrast

the concepts QUADRILATERAL and ELEPHANT. Something is a

quadrilateral if and only if it is a polygon and has four sides.

But even if elephants necessarily were mammals that had four

legs, we could not conclude that any four-legged mammal was

necessarily an elephant. That is, while the property, "four-

legged mammal", may be necessary, it is certainly not sufficient

for being an elephant. In fact, it is probably impossible to

come up with the complete story of what it means to be an

elephant - in other words, "natural kind" concepts cannot be

criterially defined. In contrast, there is nothing more to the

story of quadrilaterals than four-sidedness on top of

"polygonicity". (See [471.)

So we must face up to another distinction: some concepts are

associated with natural kinds and some are not. Or, at the very

least, we must be able to specify when certain properties are

criterial (i.e., when sets of them are analytically sufficient to

determine instantiation of a given concept).

15 _ _
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Many researchers have expressed doubts as to the importance

of definition ; for instance, many have said that no lexical

items of a natural language have analytic definitions, not even

"bachelor" (e.g., see [25]). Hence, the distinctions between

contingent and necessary truths and between definitionally

necessary truths and non-definitional necessities may seem like

logical nit-picking. After all, even if one admits that

bachelors and quadrilaterals are definable, one might further

argue that the vast majority of interesting terms are like

"elephant", for which criterial definition is impossible (e.g.,

aside from mathematics and the physical sciences, most of

what we know about the world has associated exceptions and

caveats" 152] p. 218). But consider this: once you have the

concept of an elephant - natural kind or not - you can define the

concept of an elephant with three legs without any trouble - as

simply an elephant the number of whose legs is exactly three. No

mystery there. In fact, this is a composite concept directly

analogous to QUADRILATERAL (a.k.a. POLYGON-WITH-FOUR-SIDES),

which is simply the concept of a polygon the number of whose

sides is four. We are equating the atomic term "quadrilateral"

to that composite concept. Of course, the basic natural kind

does not work like this - "elephant" does not mean "mammal with

four legs", and we are not merely attaching the name "elephant"

to a concept like MAMMAL-WITH-FOUR-LEGS. (That an elephant is a

mammal is true by virtue of fact; that a quadrilateral is a

polygon is true by virtue of necessity.) ELEPHANT-WITH-THREE-

LEGS, however, is like QUADRILATERAL, and not like ELEPHANT.

16
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The lesson here is that in order for a knowledge

I representation system to be able to handle all kinds of concepts

- even the simplest composites constructed from natural kind-like

concepts - some form of definitional structuring is necessary.

The internal structure of non atomic concepts (e.g., proximate

genus and essential difference) must be transparent to the

interpreter and definitional, or else the interpreter can't tell

if the network creator is lying about that composition. Note

that this does not imply that any lexical items need have

analytic definitions, only that one should not be able to cast

any doubt on a three-legged elephant's being an elephant.

Unfortunately, the way most network representations are

constructed, defaults are adopted at the expense of definition.

Slots/roles are not parts of the "meaning" of a frame - they are

only properties that (typically) follow from being an instance of

the frame. The direction of the role descriptions is always

outward: something has to be described by a concept before one

can see what properties follow from that attribution. As a

result, the interpreter cannot use the structure of concepts to

Idetermine subsumption of one concept by another. That is, the

1 system cannot tell if something is a specialization of another

concept, even if that fact should be transparent from its

content. For example, rather than describe the composite concept

of a rhombus as a polygon with four equal-length sides - which

I should make self-evident its relation (by virtue of meaning) to

the concept of a quadrilateral - we are forced to create the

(1 17
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empty frame RHOMBUS, and later, tell the system that this frame

"ISA" QUADRILATERAL as a separate fact. Thus, in effect, every

concept in the network is primitive. Concepts are as good as

atomic, and you must explicitly tell the system every

superconcept for any newly added conceptual complex - even a

composite concept that should "wear its meaning on its sleeve."

2.1.6 Complex names

Representation schemes that suffer from inadequate

definitional facilities tend to hide the internal structure of

concepts within their names. We might get the impression that

POLYGON-WITH-FOUR-SIDES is a meaningfully structured concept, but

in reality it is just as primitive as EI~eHANT, One interesting

consequence of the lack of definitional facilities is that the

only sense in which these frame systems are "representations" is

that their authors have arbitrarily assigned meaning to a set of

atomic symbols. There is no notion in a system without

definition of representation by structured correspondence. Only

if you aren't allowed to lie about properties can the system

automatically "know" that a rhombus was a quadrilateral.

2.1.7 Search

We should here take brief note of the effects on search of

the design decisions we have been discussing. In a system such

as KL-ONE, in which the primary constructor is a definitional or

complex-concept constructor, there are enforced limits to search.

18
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I
For example, search for the instances of a (KL-ONE) Concept can

be managed so that it never need go beyond any Concept that is

not analytically subsumed by the target Concept. But, in systems

in which default-type links are primary, there is always the

possibility of a cancel link (or a sequence thereof) and that

possibility might necessitate an unconstrained and, in the

extreme case, global search of the network. Let us imagine that

our target nodes are instances of the Concept THREE-LEGGED

ELEPHANT. In KL-ONE, the search would be directed to the target

generic Concept (on the basis of its structure) and then would be

delimited to searching down through Concepts subsumed by the

target, until it gets to the level of individual Concepts that

are marked as individuators of those subsumed Concepts. This is

the case no matter what else is in the network. In a default-

based system, on the other hand, such a delimitation of the

search space can not be guaranteed to find all instances of the

target, and any strategy based on assuming that some such limits

do apply is at best heuristic. For nothing in the semantics of

the formalism prevents having nodes for individual THREE-LEGGED-

ELEPHANTS under the node for the general concept FOUR-LEGGED-

ELEPHANT (with the associated number facet cancelled), nor is it

impossible to have nodes for individual FOUR-LEGGED-ELEPHANTS

under the generic node THREE-LEGGED-ELEPHANT (again with the

number facet cancelled). Indeed, it is not clear what disallows

individual THREE-LEGGED-ELEPHANTS under the node for (e.g.)

LION-WITH-THREE-LEGS; for though the ti lion surely is not

19
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an elephant (nor an elephant-with-three-legs), perhaps (some)

such radically atypical creatures as instances of the concept

LION-WITH-THREE-LEGS might also be instances of THREE-LEGGED-

ELEPHANT.

Another source of confusion in prototype-based network is

that there are several ways to interpret "three-legged" as an

adjective:

1. it can be characteristic of the type (as four-
leggedness is with elephants)

2. it can be an inherent property of some particular
anomalous individual born of a parent of a type with a
different characteristic property (e.g., a congenital
defect); and

3. it can be an incidental property accruing to some
individual born normally of a type with a different
characteristic property (e.g., an elephant born with
four legs but with an unfortunate experience in the
war).

This being the case, we must be careful even when calling a

node "THREE-LEGGED-ANIMAL" or "THREE-LEGGED-ELEPHANT" without

attaching somehow a causal story of how a so-described creature

got that way. If we simply take the normal senses of the two

English noun phrases, then it is possible that a three-legged

elephant ("normal" sense: type 3) is not a three-legged animal

("normal" sense: type 1).

Note that this is only a problem in a strict prototype-

representation, where a concept does not wear its structure on

its sleeve. In a carefully specified framework with conceptual

20

* .--. ',



IReport No. 4785 Bolt Beranek and Newman Inc.

composition, names (for non-primitives) are completely

irrelevant; which kind of three-legged elephant we are talking

about can be read directly off of the concept's representational

structure.

Every composite concept should have a proper place in the

network on the basis of its internal structure alone; and one

very important job of a representation system is to keep concepts

in their places. But no matter how hard we want to believe that

the concepts in our representations have intrinsic meaning,

unless the system can distinguish between defaults and

definitions, "they all look the same" to it.

2.1.8 KL-ONE - Classification

KL-ONE, in contrast to frame-based systems, has focused from

the start on the construction of complex concepts, using a small

number of structure-building operations on a base of primitive

concepts supplied by the user or applications designer. (These

operations are described in [11]). One of the central themes of

the work on KL-ONE has been that these operators must give rise

I to complex conceptual entities whose constituent structures are

i transparent to and usable by the KL-ONE interpreter. This

requirement makes possible one of the most significant features

of KL-ONE: automatic placement of newly defined conceptual

objects in the lattice of concepts. That is, the KL-ONE system,

I perhaps uniquely among semantic network formalisms, allows a user

j to generate and extend automatically a lattice of Concepts
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induced by the definition of complex Concepts in terms of simpler

ones and, correlatively, automatically to place Concepts within

this ordering in virtue of their defining constructs (their

logical form together with their conceptual constituents). [This

automatic classification is independent of the extensions of the

Concepts in the actual context of application; indeed, it is

independent of their extensions in any possible context. One

Concept is a specialization of another even if, for instance,

neither has any actual instances - and, in the most extreme case,

even if neither has any possible instances.]

To return to our favorite example: the Concept THREE-LEGGED-

ELEPHANT (which might be expressed in a standard quantificational

formalism extended to allow for the formation of complex

predicates as follows: lambda x [(lambda (y) (has y legs) 3) x &

elephant x] - see [34]) will be placed as a subconcept of both

the Concept ELEPHANT and the Concept THING-WITH-THREE-LEGS (and

hence also of THING- WITH-LEGS), and this placement will depend,

not on its name, but on the structure and constituents of its

definition. (It is to capture this aspect of KL-ONE, among

others, that we occasionally have recourse to the language of the

extended quantificational calculus -in this case, too, the

semantics of such complex predicates as that illustrated above is

strictly a function of the structure of its defining term.)

22
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2.1.9 KL-ONE - Inheritance &ad Inference

Compare this treatment of complex concepts with that

afforded in most semantic network formalisms. As noted above,

such systems do not allow automatic placement Pr classification,

and essentially what blocks such automatic classification is the

decision not to accommodate full-fledged structural composition

of concepts. This decision also has the effect of blocking the

use of the taxonomic lattice that results from the application of

the classifier for realizing certain rules (patterns) of

inference that depend on interconceptual dependencies. The

simplest example here is that of the rule of conceptual

inclusion; the rule that, e.g., any entity (possible or actual)

to which the concept THREE-LEGGED ELEPHANT applies is also an

entity to which the concepts ELEPHANT, THREE-LEGGED, and LEGGED

apply. [This rule is the analogue at the intensional level of

the combination of the rules of universal instantiation and modus

ponens.1 Indeed, one can think of the classifier (the program

that executes automatic placement or classification of defined,

complex concepts) as performing part of the work of a theorem-

prover running over formulae of a high-order quantificational

formalism extended to include the formation of complex

predicative terms via lambda abstraction, in particular, that

part of the work which depends on the structural connections

between complex lambda terms and between such terms and their

primitive, atomic constituents.)( 23
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2.1.10 KL-ONE - Decomposition of the SuperC Link

The point about the classifier as a part of a theorem-prover

raises another related issue. The SuperC link between Concepts

is the structural backbone of KL-ONE. (Again, see [13]; but see

also [10].) In conformity with our previous discussion, it must

be understood as a complex-concept forming operator (and not,

e.g., as a truth-functional connective between sentences). What

then, in KL-ONE, plays the role of the material conditional - the

"if...then " connective involved in standard modus ponens: P

and if P then Q; therefore Q?

The answer to this question is based on the observation that

the relation of conceptual inclusion (the relation between the

concepts THREE-LEGGED-ELEPHANT and ELEPHANT, for instance)

subsumes (1) the validity of the corresponding conditional

("Necessarily, if something is a three-legged elephant it is an

elephant") and thereby (2) the truth of the material conditionals

derived by instantiation (e.g., "If Clyde is a three-legged

elephant, Clyde is an elephant".) This has led us to decompose

the SuperC link so that we may more easily realize standard

antecedent and consequent reasoning - that is, reasoning via

modus ponens and its "contrapositive" modus tollens (If P then Q

and not-Q; therefore not-P). In effect, the link has been

decomposed into its purely definitional, structuring component

(which is, in turn, understood as implying the validity of the

corresponding conditional) and a component that expresses the
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standard, universally quantified, material conditional. Such

I decomposition, then, allows us to distinguish cleanly between the

validity or necessity of the conditional and the context-
dependent truth of the conditional. (Hence, we can distinguish

I between conditionals true as a matter of contingent fact and

conditionals true in every possible context.)

2.1.11 KL-ONE - Natural-Kind Concepts

we argued above that any representational formalism that

jaspired toward expressive completeness should accommodate

complex, defined concepts. But we also agreed that any such

I formalism would have to come to grips with the phenomenon of

natural-kind concepts - concepts that are best treated as

Iindefinable in terms of any reasonable set of primitives

(together with any reasonable collection of conceptual

constructors). Decomposition of the SuperC link is one step

I toward accommodating such concepts in KL-ONE; but we discovered

that by itself it was not sufficient. So we have added to KL-ONE

a special feature on Concepts, called MAGIC (see the discussioni

in Section 6.5).

I The crucial aspect of this feature is the way that Concepts

marked MAGIC (natural-kind concepts) are treated by the

j classifier. In particular, no complex, defined Concept that does

not have a given Concept marked MAGIC as a constituent can either

subsume or be subsumed by that Concept. Thus, for example, if

our network contains the Concept MAMMAL and also contains
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Concepts for some of the mammalian species (e.g., ELEPHANT, DOG,

CAT, etc.), then the Concept FOUR-LEGGED MAMMAL will not subsume

any of the species Concepts (nor, of course, will it be subsumed

by them) . This is as it should be, given that the classifier is

driven only by full SuperC links - with their definitional,

analytic, import - and given that, for example, elephants are not

by analytic necessity four-legged. Note that the decomposition

of the SuperC link allows us to express the contingent hypothesis

that all elephants are four-legged (and are mammals); but note

also that nothing in KL-ONE as so far described allows us to

handle defaults. A number of suggestions in this regard have

been made and are being actively investigated.

2.2 Applications - KL-ONE in KL-ONE

One crucial test of the expressive power of a

representational formalism is its ability to describe its own

syntax and semantics. This test was forced upon us by the

scenario described in Chapter 3. The first task was to describe

KL-ONE's characteristic syntactic (graph-theoretic) structures in

KL-ONE (and then to describe the way the graphical display

facility would present these structures to the user).

We should add that we shall not be describing a mechanism

for automatically generating meta-descriptions of KL-ONE in KL-

ONE. Such a facility is desirable, but its design and

implementation are tasks requiring much further work.

26



Report No. 4785 Bolt Beranek and Newman Inc.

We begin with the bare bones of the taxonomic lattice of KL-

ONE objects. [See Figure 2. The sentences below the figure are

JARGON sentences which express most, but not all, the information

embodied in the diagram.]

ROE CONCEPT

A ROLE IS A KL-ONE-THING.

A CONCEPT IS A KL-ONE-THING.

A GENERIC-ROLE IS A ROLE.

A GENERIC-CONCEPT IS A CONCEPT.

AN INDIVIDUAL-CONCEPT IS A CONCEPT.

FIG. 2. THE HIERARCHY OF KL-ONE OBJECTS.

As shown, a crucial top-level dichotomy is that between ROLES and

CONCEPTS, and in Figure 3, we express the main facts about the

relationships between these two major syntactic types. [This can

be confusing. The Concept ROLE is itself not a Role but a

27
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Concept; the Concept CONCEPT has a Role (named role) that must be

filled by individuals of the type ROLE. ("A CONCEPT HAS PL ROLE

WHICH ARE PL ROLE.")

A ROLE HAS AN OWNING-CONCEPT WHICH IS A CONCEPT.

A CONCEPT HAS P ROLE WHICH ARE P1 ROLE.

A ROLE IS A SUBSET OF ITS OWNING-CONCEPT'S PL ROLE,

FIG. 3. THE RELATIONSHIP BETWEEN CONCEPTS AND ROLES

Each Role belongs to a particular Concept - hence the Concept

ROLE has a Role (named owning-concept) that must be filled by a

Concept (an individual of type CONCEPT).]

Figure 4 expresses in more detail the structural

relationships between Roles and Concepts, and the following

28
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I

1
I NUMBER-/

I A ROLE HAS A NUMBER-REST. ,IHICH IS A tIUMEN-RANME,

A ROLE HAS A MODALITY WHICH IS A MIODALITY,I A ROLE lIAS PL VALUE-DESCRIPTION WHICH ARE PL CONCEPT.

SOME OF A ROLE'S PL VALUE-DESCRIPTION ARE ITS PL VAL.
A ROL'S VAL IS AN INDIVIDUAL CONCEPT.

SOME OF A ROLE'S PL VALU-DESCRIPTIO ARE ITS PL
VALE-ESRIC TION

i A ROLE'S VALUE-RESTRICTI I IS A GENERIC-CO NCEPT ,

I FIG. 4. MORE ROLE STRUCTURE

diagram (Figure 5) fills out more of the definition of GENERIC-

CONCEPTS as a syntactic type. All of the information so far has

1 been at a completely general level - in the next figure, Figure

6, finally, particular generic Concepts are introduced. Note

I that in this description of, for example, the generic Concept:

PERSON, the Concept is an individual of the type GENERIC-CONCEPT;

hence it is associated with an individual Concept that is an

individuator of the generic Concept GENERIC-CONCEPT. (Just as in
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INHER ITED-
ROLE

A GENEIC-O EI SP LSUPERC WHICH ARE

A EID WHICH ARE

THE PL ROLE OFA GENERIC-CONCEPT ARE PL GENERIC-ROLE.

A GENERIC-CONEPT HAS PL INHERITED-ROLE WHICH ARE
PLGENERI -ROL.

THE P E O GE RI-COCP ARE A P SUSET OF ITS

THE R8FEIg TE Y EBR8[E GENERIC-CONCEPT ARE A SUBSET

FIG. 5. MORE ABOUT GENERIC CONCEPTS

a description of the syntax of English, the word "person" can be

described as a common noun - as an instance of the type: common

noun, and "common noun" itself is a common noun.) This figure

also expresses the SuperC connection between the concept PERSON and

the Concept EMPLOYEE. It does this by way of the superc Role on

the Concept GENERIC-CONCEPT, marking that every generic Concept

has at least one Concept which subsumes it. [By a slight
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I

!LABEL 0 CSUPERC

I

THE(SUPERCFTHE GENERIC-C E THE
LB E I SMPYE ICONCEPT WHOSE

'EMHO LABEL IS 'ABEL IS

NPERSON)

'PERSON1 IS A N!AME.

'EMPLOYEE IS A NAME.
THE SUPERC OF THE GENERIC-CONCEPT WHOSE

LABEL IS 'EMPLOYEE IS THE GENEPIC-CONCPT

WHOSE LABEL IS 'PERSON,

THE DOMAIN

FIG. 6. SOME PARTICULAR GENERIC CONCEPTS
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extension, the highest Concept in a taxonomy, or indeed the

Concept THING or ENTITY which is the highest allowed, can be said

to subsume itself and to be subsumed by no other Concept.]

The next and last figures (Figures 7 and 8) in this series

show some of the structures associated with the scenario, in

*particular with interchange number [9]. The large figure (Figure

7 describes the KL-ONE structure shown in the small figure

(Figure 8).

(INDIEIDUATOR IN8 V A-

( THE GENERIC
-

CONCEPT WHOSECONCEPT WHOSIEMPLOYEE) LABEL IS CNETWO
EMLOE)AABEL IS

TE PLOYEE23)

(THE GENERIC-..
ROLE WHOSE OE7

LABEL 
II

'OLD-AGE-BENEFIT{EMPLOYEE3)

(THELGEAR-UT "I" VAU-ETRCINLUER

LABEL IS

(THE INDIVIDUAL-
CONCEPT WHOSE
LAEL Is '$25000)

FIG. 7. RELATIONSHIPS BETWEEN INDIVIDUAL AND GENERIC CONCEPTS

The main figure, as complex as it is, is in many respects highly
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~OLD-AGE-

FIG. 8. THE FRAGMENT DESCRIBED IN FIGURE 7.

simplified; the crucial simplification lies in the fact that, as

shown, the generic Concept EMPLOYEE lacks interesting structure.

(Indeed, as shown in that figure, it is not even marked as a

Subconcept of PERSON; but see Figure 8). Note here that the

individual Concept EMPLOYEE23 is itself marked as an individual

Concept and hence is an individuator of the generic Concept

INDIVIDUAL-CONCEPT; but it is also marked as being a filler of

the Role individuator with respect to the generic Concept

EMPLOYEE. An analogous situation holds with respect to the

structural relations between the individual Role irole37 and its

SuperRole old-age-benefit-of-employee.

2.3 KL-ONE Implementation

by J. Schmolze and R. J. Brachman

An implementation of the KL-ONE language has been under
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continuous development at BBN for several years. This past year's

implementation centered on extensions to the KL-ONE system,

transfer to the Jericho machine and development of KL-ONE

software packages.

2.3.1 Changes to the KL-ONE system

The KL-ONE system has grown in several useful ways during

this past year. Primarily, we overhauled the programmer's

ir'.erface to KL-ONE (i.e., the set of Lisp functions within KL-

ONE that an applications programmer may use). This overhaul

included software modifications and extensive documentation. In

particular:

o The KL-ONE program has become quite large, with several
programmers working on it, and has users at BBN and ISI.
Early last year, we reorganized the KL-ONE program and
distributed its software onto 12 files. This
partitioning allowed several programmers to work on KL-
ONE simultaneously. We introduced controls for access
to our software to facilitate its distribution among
both programmers and users. All users of KL-ONE can
access software that is ready for distribution, but only
KL-ONE programmers can access software still being
developed. These controls were accompanied by a
numbering scheme for releases of KL-ONE to aid the
bookkeeping associated with releasing and maintaining
software.

o The theoretical design of the KL-ONE language is
continuously evolving, forcing us to update the KL-ONE
program periodically. There were several of these
updates this year. For example, we discarded the notion
that Concepts reside in Contexts; later, we changed the
KL-ONE program so that functions creating Concepts no
longer have an argument for Context. Other changes show
our increased awareness of the distinctions between
differentiation and modification for Rolesets, reflected
in updates to our Roleset inheritance algorithms.

o Some edits were made with regard to programming
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conventions, such as the removal of the use of "wiring
lists".A They had provided a notational shorthand for
describing the Roles of a Concept but went largely
unused because of their highly specialized syntax. The
CKLONE package, written by Frank Zdybel at BBN,I Iperforms the same function with a simpler and more
natural syntax.

:f I
o We also added functions that were conspicuously missing

from the user interface. Some of these were information
retrieval functions that examine only local structure,
thereby ignoring inheritance. These functions allow a
user of KL-ONE to view the actual network topology
instead of the one implied by inheritance. A need for
this procedure arose from the AIPS group at BBN. They
constructed an object-oriented programming schema for
KL-ONE Concepts that needed its own variant of
inheritance for certain properties associated with
Concepts (these properties contained the procedural
definitions that would execute messages sent to
Concepts). In order to define their own inheritance
scheme, they required local network information.

o The most important product of our overhaul, however, was
the update of documentation for the user interface
functions, as much of it had fallen out of date. Some
time ago, we wrote a tool to generate documentation from
the actual function definitions. It combines the
comments in each function with information it can
extract from the structure of the definition. Using
this scheme, each function contains, and supplies, its
own documentation. The tool was extended to create a
file suitable for a text formatter whose final form is a
manual of KL-ONE user-interface functions 114]. We have
distributed these documents to the users of our
software.

2.3.2 Transfer to Jericho machine

Last spring, we successfully transferred the KL-ONE program

to BBN's Jericho machine. Since then, all KL-ONE software work

has been done exclusively on Jerichos. Other than the simple

problems caused by the difference in the directory structure

between Jericho and TOPS-20, we had difficulty only in

transferring the DECL Lisp-user's package, which KL-ONE depends

upon. Once this was completed, KL-ONE came up readily.
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In an attempt to judge long range limitations of KL-ONE on

Jericho, we analyzed the space required for storing Concepts and

Roles with the hope of estimating the maximum number of Concepts

that could fit into the address space of Jericho. We tried to

estimate the size of "average" Concepts, where we grant that the

meaning of "average" is vague. Of course there are many

parameters for this estimate. For example, we chose the average

number of modified roles for a concept to be 3, with the total

number of local roles being 4. After taking all parameters into

account, we calculated the space required for each "average"

concept, which was 860 bytes on Jericho. The results are

summarized in the following table.

TABLE 1. ESTIMATED NUMBER OF CONCEPTS THAT FIT IN AN ADDRESS
SPACE

Type of I DEC-20/ 1 small Jericho I large Jericho
machine I TOPS-20 I (16 mega-bytes) I (64 mega-bytes)

---------------------------------------------------------------
# concepts I 300 I 14,000 I 70,000

Note that in the above table, the estimate for TOPS-20 comes

from the experience of KL-ONE users. For Jericho, the estimates

are from the calculations described above and allow for programs,

including KL-ONE, to occupy 4 mega-bytes.

2.3.3 KL-ONE software packages

Whenever possible, we have designed extensions to our KL-ONE

implementation to be separate packages that can be included at
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j
the discretion of each user, thus allowing users to ignore

extensions they do not need. One package under consideration

will write a KL-ONE network onto a text file that can be read

into a different system to create a copy of the original network.

This will be a new input/output package for KL-ONE networks,

replacing an existing package that has fallen out of date and out

of use. We are still in the initial design phase, with

contributions coming from BBN, Burroughs, Fairchild AI Lab, ISI

and Xerox PARC. We intend the notation we choose for

representing networks on text files to be:

o machine independent, so we can share networks between
sites, as KL-ONE runs on three types of machines (TOPS-
20, Jericho and Dorado/Dolphin) and will soon run on VAX
machines under FranzLisp;

o easily readable, similar to the notation for Lisp
functions that a prettyprinter generates;

o suitable for the integration of one network with
another.

Another package that is almost ready for inclusion in KL-ONE

is a classifier, constructed by the CONSUL group at ISI. The

classifier uses the fact that relationships between KL-ONE

Concepts have the status of definitions and places a Concept at

its "appropriate" location in a network. The "appropriate"

location is below all Concepts which subsume it (Subconcept) and

above those which it subsumes (Superconcept). The classifier

already works; we need only design its interface to the rest of

the KL-ONE system.
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2.4 Interactions with Other Research Groups

Over the last several years, BBN's Knowledge Representation

for Natural Language Understanding project has had a significant

impact on the field of Artificial Intelligence. A number of

groups outside of BBN are now either using one of our implemented

subsystems, planning to use one, or basing their further work on

our ideas - in some cases using paper and pencil versions of our

frameworks.

2.4.1 First KL-ONE workshop - 1980

The most recent evidence of the extent to which our work has

permeated the area of knowledge representation was the attendance

at the KL-ONE Workshop, held last October. Gathered in Jackson,

New Hampshire, were 49 people with serious interest in using KL-

ONE in some capacity, or with significant experience in using it

already. Most important, that group represented about 21

institutions other than BBN: The Wharton School, University of

Rochester, NOSC, WPI, Simon Fraser, Harvard, University of

Illinois, University of Delaware, University of Massachusetts,

University of Amsterdam, DARPA, NIH, Xerox PARC, SUNY/Buffalo,

University of Pennsylvania, Burroughs, GMR, Boston College, ISI,

MIT and TI. In addition, we had attendees from two other groups

at BBN.

At the workshop, our research group reported on recent

progress and plans for future investigations. We requested, and
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I
received, feedback about KL-ONE as a general-purpose

representation language: who is using it or plans to use it; how

they use or plan to use it; what is wrong with or missing from

KL-ONE. A popular request was to translate KL-ONE to a Lisp that

runs on the VAX machine; as the VAX is more common than machines

that already run INTERLISP. Efforts in this regard are reported

later in this section. We held several small discussion groups

concerned with (1) particular representation problems, such as

representation of beliefs, and (2) implementation topics, such as

the possibility of a virtual KL-ONE language. However, the

primary advantage of the workshop was the gathering of these

researchers who use KL-ONE to meet with each other and discuss

their projects and problems.

2.4.2 Primary collaborations

Over the past year, the most experienced users of KL-ONE and

the KL-ONE designers at BBN have developed a strong collaborative

effort. Much discussion has occurred concerning important issues

facing KL-ONE's design, such as: introducing "qua" concepts into

KL-ONE; activating Roleset Relations so that they cause a form of

inheritance; distinguishing various uses of individuals; plus a

host of other topics. Our primary communication medium is the

ARPANET, with U.S. mail providing a medium for pictures. The

result has been a stimulating correspondence between researchers

i at BBN, Burroughs, Fairchild AI Lab, ISI, and Xerox PARC. In

fact, we met for several days before the 1981 KL-ONE Workshop,

I
II
- ~. . .



Bolt Beranek and Newman Inc. Report No. 4785

held in October, to have intensive discussions and make plans

concerning the direction of our collaborative research for the

next year.

These interactions have also led to collaborative software

development. For example, ISI built a classifier for KL-ONE that

will automatically place new Concepts in a KL-ONE network at
1

their "proper" location . Originally, BBN constructed a

classifier as part of the JARGON system. However the ISI version

will supersede, as it is more complete than the BBN version.

Additionally, small software fixes and additions have been made

by ISI and other groups at BBN who use KL-ONE, and BBN has shared

these with the remainder of the community.

2.4.3 Translation of KL-ONE to FranzLisp for VAX machines

In May 1981, Tim Finin at the University of Pennsylvania

approached us with the hope of constructing a translator to take

our Interlisp software for KL-ONE into FranzLisp for use on VAX

machines. Since that time, the translator has been built, KL-ONE

has been translated into FranzLisp, and the FranzLisp version is

being tested and debugged. Tim Finin and others performed the
bulk of the work for this task, with assistance from BBN, CCA and

Temple University. BBN's contribution was to provide:

1
This classifier is described in slightly more detail in the

section on KL-ONE Implementation 2.3.3.
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o Consultation for the design of the translator

o Interlisp expertise and information concerning the
precise definitions and arguments for Interlisp
functions (in particular, for functions used by KL-ONE)

o Source code for KL-ONE

o Assistance with the translation by preprocessing each
file to rid usage of CLISP.

The current estimate for release of a FranzLisp version of KL-ONE

is January 1982. At the 1981 KL-ONE Workshop, we met with

prospective users of this system to arrange protocols for

software distribution and maintenance.

2.4.4 Other collaborations

Besides the KL-ONE Workshop, we have had a history of

collaboration, support, and impact on the following research labs

and university Computer Science departments:

o Universities:

University of Illinois: two graduate students are
using KL-ONE in their dissertation research work.

University of Pennsylvania: one faculty member's
recent thesis on nominal compounds used a
representation framework substantially influenced
by KL-ONE; other faculty are doing work on
discourse-level phenomena based on work done in the9 ' past on our project; other faculty are translating
KL-ONE software from Interlisp to FranzLisp to run
on VAX machines; other faculty implemented a small
version of KL-ONE in PROLOG.

MIT: various graduate students have at one time or

other worked on our projects; one undergraduate
thesis is based on work done here; a recently
completed Ph.D. thesis on language generation used
KL-ONE as one of its representation languages.
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Harvard: an underqraduate thesis has been completed
on marker-passing simulator built to support
inference in KL-ONE networks; an almost-completed
Ph.D. thesis was written explicitly as an extension
to KL-ONE work. Another thesis using ATN's may be
extended in future work using the KL-ONE system.

Research Laboratories:

Sperry-Univac: a research group is using RUS as a
basis for a front-end to a database system. They
are considering usage of PSI-KL-ONE to create and
process semantic representations of queries in KL-
ONE.

Burroughs: there is work on extensions to KL-ONE

to handle events and histories, "qua" links, etc.;
and a proposed collaborative project to develop KL-
ONE implementation in PLAN.

Xerox-PARC: implementation of KL-ONE in SmallTalk
(KloneTalk) is under active development and
extensively used.

ISI: full-scale collaboration is providing KL-ONE
and RUS parser implementations; both used actively
as integral part of Consul system.

CCA: they are planning to use KL-ONE structures in
VIEW, the successor to spatial data management
system.

Other groups at BBN include the AIPS project, which
uses KL-ONE as integral part; and interaction with
Brian Smith on NANTIQ. [63]
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3. OVERVIEW OF THE NATURAL LANGUAGE SYSTEM

3.1 Goals for a Natural Language System

ii One of the goals of the Knowledge Representation and Natural
Language group at BBN has been to provide powerful general tools

for natural language processing to build language understanding

systems for a decision maker using a graphics display. we have

in mind decision makers accessing information from a database

that can be represented visually; they need to collect

information from the database, add to it, change it, and define

new features. A special feature of this language understanding

system is the assumption that human users express themselves

naturally. They can utter more than direct imperatives and can

ask questions other than the direct questions typical of most

current AI language systems.

As a first step in building a natural language system that

meets these goals, we researched, designed, and built an

experimental prototype that accepted natural English from a user

to generate ATN networks on a--two-dimensional display. Our

current effort is aimed at a system wit', more linguistic

sophistication than our first prototype. we have planned for

expanded capabilities in several dimensions. These include the

capacity to interpret many different kinds of referential

phrases, as well as the intended meanings of new sentence types

(such as reports of errors, direct information retrieval
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questions, requests for action via questions, multi-utterance

requests, elliptical questions, clarifications, reports of plan

changes, and reports of new plans and additional task

capabilities (such as recognition of errors in the speaker's plan

and use of expectations from recognizing a plan). We believe

these capabilities are basic to a system that will serve a

decision maker's needs in a command and control situation.

In this chapter we outline the kinds of domains we have been

exploring for prototype systems. We also report on an

investigation by Bobrow, Sidner and Webber of the tasks typical

in a newly chosen domain, and then illustrate a sample

interaction between a user and the proposed prototype system for

this domain.

3.2 Domains for Experimentation

by C. L. Sidner

In our first ARPA proposal [77] (for research on natural

language) we proposed to investigate techniques for a system

which could deal with dialogues like the one below.

1. Cdr: Show me a display of the eastern Mediterranean.

[computer produces display]

2. Cdr: Focus in more on Israel, and Jordan.

[computer does so]

3. Cdr: Not that much; I want to be able to see Port Said
and the island of Cyprus.
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[computer changes scale and window to include the
desired features]

4. Cdr: Now show me the positions of all U.S. and Soviet
vessels in the area.

[computer does so, and makes a default assumption
for displaying the difference between U.S. and
Soviet vessels]

5. Cdr: Where is the John F. Kennedy?

Computer: Two hundred miles to the west of the point
displayed.

[The ship is not on the screen, so the system
displays a point at the left edge of the display)

6. Cdr: Show me the course tracks for the Soviet vessels
for the last five hours.

[computer does so]

7. Cdr: What kind of ship is that?

[points to a Soviet vessel)

Computer: Soviet missile cruiser.

8. Cdr: Show me the other missiie cruisers, and display
all vessel types wit-- two digit code.

[computer o~links or flashes all of the missile
cruisers for 2 1/2 seconds and displays with
each vessel the two digit type cc.de (assumed
previously agreed on by the commander)]

9. Cdr: Remove the course tracks, and show small dots
with one-hour course tracks for any known Soviet
aircraft in the area.

[computer does so]

[commander makes his assessment of the situation

and makes appropriate orders for his forces)

10. Cdr: Remove the planes and track the Soviet vessels for
the next four hours. Show any deviations from
current course double intensity and ring bell
when detecting course change. Flash vesself I changing course for 10 seconds.

I4



Bolt Beranek and Newman Inc. Report No. 4785

[computer accepts standing orders for continual
monitoring and conditional future behavior]

To explore some of the problems implicit in this scenario

and to develop some techniques for dealing with them, we

developed a prototype based in an ATN domain. Our scenarios for

this prototype (see [13] for the user's utterances and the

system's actual response) included direct imperatives to be taken

as direct commands, as well as declaratives to be taken as

indirect commands (as in exchanges 1 through 4 in the above

scenario).

More recently we conducted an experiment in collecting

protocols of users interacting with simulated versions of the

system we envision. Our analysis of those protocols convinced us

that the behavior exhibited in exchange 3 above is the "tip of

the iceberg" of a much more varied and common linguistic use. In

particular, people often discuss a wide variety of changes they

require in a computer system for reasons due both to changing

their minds and to misunderstandings of what the system can or

would do. Such users negotiate making changes in particular

ways, and they comment on the system's progress as the changes

occur. To provide a context in which to develop techniques for

modeling such behavior, we have selected an additional domain

where the graphic display problems are similar to real command

and control situations, and where the kinds of exchanges users

have with a system mirror the behaviors described above. We call
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this the KL-ONE-ED domain. In the next section we discuss the

types of user tasks and system operation to be found in that

domain.

3.3 The KL-ONE-ED System

by R. J. Bobrow, C. L. Sidner and B. L. Webber

There are two classes of tasks to which we expect the KL-

ONE-ED system to be put: that of a layout assistant to enable the

user to design interactively a maximally effective display of*

some known or new KL-ONE structure as a text illustration) and

that of a graphic editor to enable the user to construct,

manipulate, or modify an otherwise difficult to comprehend data

structure.)

These two uses vary not just in their intent and effect but

also in the common sequences of utterances a user would make to

enlist and manage the system's help. Moreover, whereas similar

utterances might be made in both types of task interactions, the

F system response that would be appropriate in each case might be

very different. For example, consider the utterance "Remove this

concept." Within a layout task, it may be the concept's

suppression on the virtual screen that the user wants, whereas

within an editing task, it may be that concept's removal from the

cujrrent virtual data base (i.e., from the current overlay) that

is intended. (See the Glossary, Section 3.3.3 for brief

descriptions of these and other boldface terms.)
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Another example involves an utterance like "Show me the

EMPLOYEE concepts". In layout, the intended effect would

probably be their simultaneous appearance on the screen, placed

according to the current presentational conventions. For editing

purposes, though, users might expect to have them shown one by

one, so that they could make appropriate changes to one before

going on to another.

Now, while users involved in a layout task will primarily be

interested in operations that affect the virtual screen and their

window onto it, and while users involved in editing are primarily

interested in operations that affect one or more virtual data

bases, both types of operations will clearly be needed in

satisfying both types of task. For example, in editing, users

may attempt to get more room on the screen (a layout task) before

adding in a new concept, while in layout, they may be both

creating and modifying a new data structure as well as arranging

it on the screen.

Notice that task and subtask are being used here to refer to

things a user wants done, be they "multi-step" desires like

"Create a partition of the Generic Concept DOG" or single-step

ones like "Scratch the IConcept FIDO." Operation, on the other

hand, is being used to refer to things the system can do, like

F suppressing a data base object or moving the window around the

virtual screen. From the point of view of natural language

interaction, a user can explicitly request the system to perform
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an operation - so that, in some sense, a task can be fulfilled by

a single operation - or the system can ask the user whether he or

she wants a particular operation performed (see exchange [6S] in

the scenario in Section 3.4 where the system responds to the user

with "Shall I empty the screen and save the current display?")

The kinds of user tasks and system operations with which we

will be concerned for layout and graphic editing are the

following:

General Facilities

o Constructing and/or modifying a general data base

o Constructing and/or modifying a presentation

o Constructing and/or modifying a KL-ONE virtual lattice

3.3.1 User tasks and system operations

3.3.1.1 Task: Identify System Capabilities and/or Contents

This task requires the user's ability to query and thereby

learn about any of the various knowledge sources - the current

virtual data base, the system's meta-knowledge, the current set

of presentational conventions, or the current standing orders.

Subtasks that the user might be involved in include:

o Finding out some characteristic of a Concept before
displaying it - e.g., whether there's likely to be
enough room to display all its SubConcepts, either its
immediate ones or all of them,

o Finding out whether certain Concepts exist before asking
for them to be displayed,
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o finding out system capabilities.

Relevant system operations are those needed for any cooperative

question-answering system able, among other things, to

o Carry on either a linguistic, graphic or mixed-mode

interaction with a user

o Correct the user's misconceptions

o Enter into a clarification or negotiation subdialogue.

3.3.1.2 User Method: Try out Multiple Alternatives

This method is useful both in preparing layouts and in

incrementally developing a desirable change or addition to the

data base. Relevant system operations are those needed to:

o Develop a new virtual data base and/or presentational
conventions for producing a virtual screen. The
specific operations involved in these tasks will of
course vary with the type of data base. For a KL-ONE
type data base, the operations are discussed in the
section 3.3.1.4 below.

o Manage a set of data base overlays. This process
involves directly or indirectly invoking system
operations to:

. Name an overlay.

. Flip back and forth between overlays

" Assimilate an overlay into the data base to produce
a new real data base.

o Manage a set of presentations. This process involves
directly or indirectly invoking system operations to:

* Name a presentation.

" Flip back and forth between presentations.
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3.3.1.3 Task: Create a Desired View of Data

Except for those situations in which the user wants to see

objects that are not in the real data base, subtasks here involve

changing the display via alterations in the presentational

conventions and not via changes to the virtual data base. (Of

course, the creation of new objects or alterations to old ones,

even if intended just for display purposes, implies thit the

current virtual data base is no longer equivalent to the old one.

Provided that the old one is not later "frozen in," there is no

problem.) The following list includes subtasks that the user may

have to perform:

o Getting a set of objects on the screen. This subtask
may involve:

*Constructing some new objects - see discussion in
3.3.1.4

*Focusing on a region of the virtual data base (or,
in other words, placing a window over part of the
virtual screen. This may involve some computation,
in order to assign positions on the virtual screen
to relevant objects in the virtual data base.)

Zooming or panning around the current area of the
virtual screen. This will only increase the number
of objects on the screen if both the virtual data
base and presentational conventions are such that
other data base objects have assigned positions
outside of, but "next to", the area currently in
view.

o Getting more room to display a particular structure.
This subtask may involve:

. suppressing some details

. moving the current structure around on the virtual1 screen
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* panning the window around or zooming it out

* zooming the window in

. reducing line crossings

. making an object, set of objects, or substructure
more prominent

• achieving a particular correspondence between
screen positions of various objects and directions
of connections between them.

o Relevant system operations are those needed to:

* establish a window on the virtual screen, using
system's default mapping constraints or whatever
user-specified constraints currently in force

* rearrange objects on the screen

* reduce objects visible on current and/or future
screens

* highlight objects on the screen

* change symbology (size, shape, etc.) used to
represent objects, including connections, currently
on screen

* change screen captions

* change global scale.

3.3.1.4 Task: Construct or Modify a KL-ONE Data Base

This task requires the user's ability to:

o Differentially subcategorize a concept

based on "diffing" a particular Role - the user is
likely to specify how subcategories differ vis-a-
vis that Role,

* based on additional restrictions to V/R,

based on adding roles - the user is then likely to
elaborate each new subcategory in turn,
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*based on intersections with subcategories of
another Concept - since this leads to a known set
of graphical problems (line crossings), the user is
likely to attend to this layout task sometime
later,

*based on subcategorization of a Role's V/R.

Notice that the first two types of subcategorizations
involve adding new information to the lattice. The
latter three involve making explicit information already
implicit in virtual lattice, hence user must have some
additional reason for making these subcategories
explicit. For example, the subcategories may also
differ by virtue of having additional roles that the
user may then mention.

o Create a partition of a Concept (i.e., subcategorize it
both mutually exclusively and exhaustively). This also
sets up a context for interpreting subsequent remarks.

o Draw up one or more abstractions of a set of Concepts.

o Replace one subcategory of a Concept with a set of
others.

o Change names, classes of names, associated with Concepts
or Roles.

o Add/delete Individual Concepts or Roles.

o Undo previous changes.

3.3.2 User methods for layout and graphic editing

Users are expected to have certain general methods they

might follow in carrying out any layout or graphic editing task.

How these methods might be exploited to improve the system's

behavior is not immediately clear to us, but it seems useful to

keep them in mind. A list of these methods follows.

o Remove detail from screen before beginning task, in
order to make things more visible; put details back

afterwards
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o Try out alternative layouts or graph structures - hence,
the need to keep several named alternatives for viewing

o Try alternative ways of achieving task - backtrack
whenever stuck and try something else. Note that the
more trial and error involved in achieving goal, the
less recognizable is the plan, though not necessarily
the goal

o Make a change in one representation, display it in
another to see its ramifications, then return to the
first for further changes (a la editor/formatter pairs)

-in this domain, the user might make changes
graphically, then pretty-print them.

3.3.2.1 General System Principles

There are two general principles that the system could

*adhere to in its interaction with the user, which would reduce

*the amount of effort it needed to expend, while still behaving

satisfactorily. These principles, similar to Sacerdoti's

planning principles followed in his NOAH system: "Use existing

objects," "Don't order operations before being forced to," etc.,

are:

1. Make minimal changes to the screen. For example, the
system might choose to answer a request like "What are
the Roles under EMPLOYEE BENEFITS?" linguistically
instead of graphically. If users actually wanted one

or more roles put on the screen, they could then ask
explicitly.

2. Describe things to the user in terms of results, not in
terms of the operations that achieve them. The
suggestion made earlier about showing the user ways of
getting more room on the screen follows this principle.

3.3.3 Glossary

real data base (or just "data base") Starting point of
information on-line. The data base cannot be
changed directly, but rather through the
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mechanism of "freezing in" or assimilating one or
more overlays.

data base overlay

! (or just "overlay") Nameable collection of
incrementally acquired changes to the data base.
The data base isn't actually changed until one or
more of these overlays is frozen in. This mayi involve, a la EMACS, asking users whether they
want to name the current overlay or freeze it
into the data base whenever they indicate a
desire to start afresh, or to start something
else (i.e., a non-undoable sort of thing), or log

I virtual data base
(or "VDB") Real data base plus overlay(s). By
flipping back and forth between overlays, the
user can see alternative versions of the real
data base. One special virtual data base is the
real data base plus the null overlay.

Iactive region That portion of the virtual data base, often more
than what's currently visible, on which the user
would consider himself or herself to be working.
In a relational data base,' this might be a
relation, not just those of its records and
fields currently on display. In a data base of

I faces, the active region might be a face or even
a set-of faces, even though the window may have
been zoomed in to the tip of a single nose. For
a KL-ONE lattice, the notion of active region isI somewhat more problematic, as there are few if
any natural units dividing up the data base.
Nevertheless, the notion seems valuable in
delimiting an appropriate context for
interpreting definite references and quantifiers
in the user's utterances. Suggestion: if this
turns out to be the only value in the notion,
then we may be able to get by with equating the
active region of the KL-ONE data base, while the
user is involved with a particular overlay, with

the set of structures visible or mentioned.

*virtual screen (or "layout") Result of mapping virtual data base
*onto a limitless but scaled 2-dimensional

surface. For computational efficiency, not every
object in the virtual data base need be

I automatically assigned a position on the current
* virtual screen. One strategy open to us is to

compute an object's assigned position only whenI it becomes part of the active region.
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window Conforming to standard display use, that part of
the virtual screen currently visible. A window
can be panned or zoomed, thereby changing what
sanctioned parts of the virtual screen are
visible. For now, we will be assuming that the
system has a single window. If we decide to take
advantage of split-screening, users will be able
to declare multiple windows. If these windows are
to permit different scale views of the virtual
data base, we must consider the problem of what
scaling is associated with - a window or the
virtual screen.

presentational conventions
Specific and general constraints that the above
mapping must satisfy. These may be constraints
relating t6 individual data base objects, sets of
data base objects, or classes of data base
objects. They include:

o constraints on how data base objects are
to be displayed on the virtual
screen(shape, size, labeling
conventions, flashing, etc.)

o constraints on where objects are to be
positioned on the virtual screen.

o constraints on what objects or details
are to be suppressed (not permitted to
be seen) and which ones sanctioned
(permitted to be seen). N.B., Some
suppressed objects and details may have
an assigned position on the virtual
display, while others do not. Those
with an assigned position will not be
visible, even when that position is
within the window. However, in that
situation, if its status changes to
"sanctioned," such an object or detail
will suddenly appear on the screen. Note
- there may be a need to negotiate if
the user attempts to put another object
"on top" of a suppressed one. This
implies that the graphic system should
be able to recognize such an attempt.

o specifications of additional labels and
captions not directly correlated with
data base objects.
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Note that the system -'s assumed to have a set of
default presentational conventions that are used
whenever the user has not specified what
conventions are to be in force.

presentation The set of commands that produces the virtual

j , screen. We are assuming the ability to manage a
set of alternative presentations as well as a set
of alternative overlays.

meta-knowledge (or "data base model") Information about whlat can
I be in the data base and what the system can do.
I Meta-knowledge can be used for answering users'

queries, but it cannot be changed by the user.

3.4 A Scenario for interacting with KL-ONE-ED

The following scenario is one that the Knowledge

I Representation and Natural Language Group had chosen to use as

a its test for our current system design. In the text after each

exchange, are comments about the kind of behavior exhibited by

the user and the system. We plan to design our system to have

the general capacities to respond to users' behavior in ways

I similar to those shown.

1 3.4.1 The Scenario

P: Show me the generic concept
called "employee."

I 5: OK.

Behavio.r: standard imperative request and response.

[2J
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employee benefitsk

P: I can't fit a new individual concept below
* I it. Can you move it up?

S: Yes.

Soc. Sec. No. frtnm

employee benefits last name

Behavior: declaratives used to impart information to other
participants, questions as used to request action
or information, depending on what the user knows.

[31
P: Ok, now make an individual
employee concept whose first name
is wSamn and whose last name is
OJones." The Social Security( number is 234-56-7899.
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S: OK.

So.Sc o.frtnm

employeee

benefits
Sam last name

Behaior:a declarative that implicitly indicates where the
concept should be placed, and a declarative (2nd
sentence) that is also a request.

[4]
P: Is there a role on
employee called "retirement fund"
or something like that?

Behaior:information retrieval question

S: No there isn't. What info
are you trying to add?

Behaior:standard answer plus attempt to get moreI information about what user is doing. Note that
system that user is adding to assumes the display
because of the context so far.
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15]
P: How about a role called "pension
program" or "pension plan?"

BehaiorMixed initiative - user doesn't want toanswer
question because he's trying to find out
something he needs to know.

S: Neither is a role. Would you
like to see all the roles on employee?

Behavioquestion is a helpful response. Note that an
imperative form ("Try looking at all the roles on
employee") implies that system knows what a'ser is
doing, while the question is helpful even though
the system isn't sure of exactly what the user
wants.

[1]
P: No, I'd like to see the structure
below employee benefits.

BehavLior: A request that states simply the effect, not how
it is that the system is to accomplish it.

S: Shall I empty the screen and
save the current display?

Behaior:System has two possible responses, each with
different effects. Asks which is intended by
asking about one of them (system here must know
that user is aware that it is capable of adding
to the display).

[71
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P: No, I want the stuff here <points to screen>.

I benefits Soc. Sec. No.

old vacat. sick
age time time

I

Behaior: A typical case of pointing, accompanied by
reference using a lexical generalization ("the
stuff").I

[8]
j P: What's the vr on old age benefits?

I Behair Typical information retrieval question, but "old
age benefits" refers to those now visible from
the previous action; a case of referring to
visually present information.

I S: A dollar amount.

[91
P: Give the ic $25000 as the
value of old age benefits under
employee benefits.

( i : Typical imperative request.
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S: By under employee benefits,
do you mean to put the particular
roleset and irole or just the irole?

Behayi9_: Beginning of a clarification exchange.

[101
P: Can you display just the roleset?

Behavior: Answering a question with a question is typical
in the clarification exchanges. Note that "Can
you" is really asking about the system's
abilities and in this case is not an indirect
request for acting.

S: No.

[111

P: Use the irole. No, never mind.
Display the roleset and irole.

Beh o: Signifying a change of plan by "never mind" is
common.

S: Done.

[12]
Now I need some figures on
overhead and R&D.

B o: System must recognize that user's last plan is
now complete and that his attention is directed
to something new. The system is not change the
display to overhead and R&D), unless it has some
previous knowledge of an interaction that
indicates that it knows what the user has in mind
by "some figures on overhead and R&D."
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benefits~Soc. Sec. No.

old sick
age tm

! age l vacation ti e

This scenario does not exercise all the tasks of KL-ONE-ED

described earlier, but for a portion of them, it does demonstrate

how people use natural language in a natural way. The scenario

illustrates a variety of sentence types and a number of different

ways speakers express their intentions. We believe that these

forms should be the core of a natural language understanding

system for KL-ONE-ED, so that additional tasks may be added

without new and extensive changes to it.

I
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4. TOOLS FOR SYNTACTIC AND SEMANTIC INTERPRETATION

In this chapter we report on our progress on the tools we

have been building and extending for syntactic and semantic

interpretation. We discuss the interaction between the RUS

parser and the PSI-KL-ONE parser, and we report on the new

dictionary system, which provides lexical acquisition to the RUS

parser in a manner that is easy for users to understand.

4.1 Architectures for Syntactic and Semantic Interaction

2
by R. J. Bobrow and B. L. Webber

One of the major features of the RUS and PSI-KL-ONE

components of the Natural Language Understanding (NLU) system is

the style of interaction between these two components, including

the requirements that such interaction puts on the internal

operations of both the syntactic (RUS) and semantic (PSI-KL-ONE)

processors. The interaction is characterized by the information

flows between two potentially parallel processes, which often

occur before either process has completed its task. Thus, before

a complete syntactic structure has been assigned by RUS, PSI-KL-

ONE is already operating on partial results hypothesized by RUS.

Data obtained by Phil Cohen (indicated below) led us to examine

the possibility that such an architecture extends throughout the

2
Sections 4.1 through 4.5

65



7I
Bolt Beranek and Newman Inc. Report No. 4785

entire NLU system. In trying to understand how to design an NLU

system with such an architecture, we abstracted and generalized

the style of interaction that occurs between RUS and PSI-KL-ONE,

and discovered that this style is potentially applicable to a

variety of search and perceptual tasks. The following material,

based on work by Bobrow and Webber, provides both a general

description of this process architecture, and an account of how

the RUS/PSI-KL-ONE interaction fits within this framework.

It is generally agreed that determining the syntactic

structure of an utterance is only part of a larger process of

recovering the meaning, intentions and goals underlying its

generation. This implies that parsing strategies cannot be

evaluated in yagu. Either explicitly or implicitly, evaluation

must take account of the architecture of the NLU system in which

parsing takes place. In this chapter we present one such general

architecture, together with an evaluation criterion for overall

system and component performance. We examine the implication of

this architecture for the design of components of the NLU system,

particularly the syntactic and semantic analysis processes and

their interfaces to one another and to later components such as

pragmatics, reference resolution, discourse modeling and response

generation. Our interest is in exploring subarchitectures for

such systems (types of interconnections, the "whens" and 'whats*
3

of information flow, etc.) that can maximize system efficiency.

3
Such subarchitectures are are contrasted with increasing

efficiency by recoding, compiling, etc.
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This model forms the basis for a family of NLU systems developed

I at BBN. In this chapter, we both discuss general design issues

I and contrast the particular implementation decisions made here
with those made in other systems.

I The general architecture derives from a view of natural

I language understanding as a pr.eptua. that is, as a

process which attempts to account for input data in terms of some

Iunderlying object or event that produced the data. We assume

that utterances are generated for a purpose, and that underlying

I them are meanings and a range of intentions which a listener must

Iattempt to recover in order to respond appropriately. Natural

language understanding involves giving an account of the words of

an utterance in terms of syntactic functions, both of these in

terms of a propositional content, and all three in terms of a

range of speaker meanings, intentions, and goals (from directing

the listener's attention to a particular object to getting some

nonlinguistic task accomplished). At any instant such accounts

should be the best ones the listener can muster, but this by no

means implies that these accounts cannot or will not be refine.d

I as the discourse proceeds and more data must be fit into place.

I Since the process of generating an utterance involves the
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4
application of many sources of knowledge and many constraints

it is plausible to assume that understanding - the inverse of the

generative process - involves similar types of knowledge. The

architecture we are considering assumes that understanding can be

modeled as an interconnected set of processors with a primary

direction of information flow through them, intent on applying

such knowledge.

This is not a new idea, especially in the artificial

intelligence community. Early on, it was common to find the

following architecture in natural language question/answering

systems:

question --- >1 PARSE I --- >1 INTERP 1--->l RETRIEVE I --- >response

where arrows indicate the primary (in fact, the pnly)

direction of information flow through the system. Even the idea

of increasing the richness of connections in such systems-

additional feedback and "feedforward" channels - is not a new

one. For example, even the earliest version of the LUNAR system

[72, 731 had a communication link from its semantic interpreter

4
These constraints come in part from the planner, which chooses

both the meaning to be expressed and the focus to be given to
meet some set of communicative goals. Further constraints are
added by the semantic component, which suggests words to express
the meaning and by the syntactic component, which constrains how
these words can be joined to produce a well-formed structure that
carries both the meaning and the focus.
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back to its ATN parser; this link was used to tell the parser

I that the syntactic structure it had assigned to the input

sentence was uninterpretable and hence couldn't lead to a
retrieval request -- "Try again." The link provided an

I information path from the semantic component to the parser, but

it required the parser to produce a complete syntactic analysis

of the input without semantic feedback to advise its intermediate
decisions, terminology, and the interpreter communicated back I

1 to the parser whether or not the constituent was semantically

Iacceptable. Unfortunately, this step slowed down the process

considerably because the interpreter was being asked to evaluate

I many more constituents than would be part of the final syntactic

Istructure assigned to the sentence, and the attempt was

abandoned.) It also had the effect that no output could be

obtained from the system unless and until the parser was able to

produce a complete syntactic analysis of the input string.

These characteristics of the information flow in the

original LUNAR system depart from the performance of human

listeners. Even before an utterance is complete, it appears that

1 listeners begin to generate an explanation for it. There is even

I evidence that under certain conditions, they begin to respond to

5
Later, a simple experiment was done on LUNAR to see the

effects of such advice. The parser informed the interpreter ofa
constituent about to be closed or popped, in augmented transition

I network (ATNI 69
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6
it well before it is complete. These interim explanations and

responses may later be modified or replaced, but they are correct

in a surprising number of cases. In any event, the overall NLU

system should not only produce explanations of complete

utterances, itself a non-trivial task, but should also lend

itself to a style of processing that has been referred to as
producing ntinual ay [41]. Having such

continually available output from intermediate processors also

permits the design of a system in which the various processors

can interact to improve the overall efficiency of the recognition

process. The notion of a recognition process with continually

available output forms the intuitive basis for what we are

calling Nincremental recognition" - the subarchitecture for NLU

systems that we are here advocating.

The idea of using semantic information to aid in the parsing

process is highly seductive, and several directions have been

taken in an attempt to achieve this goal. *Semantic grammars"

[17] finesse the issue by discarding modularity in favor of

absorbing parsing and interpretation into a single function.

More modular approaches to natural language understanding systems

6
This process has been observed in videotapes of students

performing assembly tasks in response to verbal instructions.
Phil Cohen reports that in one case the student initiated a
response that seemed to require determination of the intended
speech act, but that occurred before m syntactic constituent
had been completed.
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I
like Diamond/Diagram [44, 54] continue the attempt to use "later"

processes to improve the performance characteristics of both

nearlier" processes and the system as a whole. So this chapter

should not be read as claiming the first or the only exploration

of rich interconnections between the processes involved in

natural language understanding. Rather, it is a discussion of

design criteria we are developing for such interconnected systems

- criteria that maximize their efficiency, as well as lend

themselves to producing continuously available output. We also

discuss the system we are designing and building to meet these

criteria.

Since the design criteria we propose are based on the idea

of "incremental recognition," we must first explain what we mean

uy "recognition" and the way in which it can be considered

"incremental." This explanation will bring up several important

design issues, including:

o The importance of coordinated design of pairs of
processes and the information and control flow at their
interface

o Strategies for specifying and using partial results -
i.e., abstract vs. disjunctive descriptions

o Operating with incomplete input.

Before we engage in more abstract rambling though, we will

first introduce the example from which our theoretical notions

were derived. We will give a brief overview of the operation of

( 71
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7
BBN's RUS parser and the syntactic-semantic interface and

8

interpretation system PSI-KL-ONE , whose style of interaction led

us to investigate the general concept of incremental recognition

processes. Both RUS and PSI-KL-ONE may be viewed as incremental

recognition processes of different types, and their cascaded
9

interactio produces another incremental recognition process,

which has been used as the front end for several NLU systems.

After this overview of RUS and PSI-KL-ONE, we will give an

introductory definition of the concept of incremental recognition

and the design issues it raises for the construction of NLU

systems. Finally we will discuss the possibilities for extending

the current RUS/PSI-KL-ONE interaction to permit the design of a

NLU system in which it will be possible to generate initial

output from the discourse and response planning components even

before the parser has completed parsing any constituents.

4.2 The Syntactic/Semantic Cascade

7
An acronym for "Render Unto Syntax."

8
"Parsing and Semantic Interpretation in KL-ONE"

9
A generalization of the concept of a pipelined interaction of

processes, see [76).

72



Report No. 4785 Bolt Beranek and Newman Inc.

I 4.2.1 The RUS parser

In Section 4.1 we mentioned an experiment done to see if

I LUNAR's performance could be improved by making its ATN parser

and semantic interpreter more incremental. This experiment

1involved asking the semantic component to verify the

interpretability of each syntactic constituent built, as it was

about closed, or popped, in ATN terminology. LUNAR's performance

I was not improved, and this particular approach was abandoned.

However the idea of incremental syntactic/semantic processing was

I nQt summarily abandoned. An investigation into the efficiency

* j advantages of "semantic grammars" [171, coupled with a desire to

retain the modularity and extensibility of a purely syntactic
10

I parser, led to the development of the RUS parser.

RUS was based on the notion that both the semantic

interpretation process and the possibilities for feedback from

I the semantic component to the parser would be better served if

there was interaction between the parser and the semantic

component at the time that phrases were about to be attached as

constituents of larger phrases, as well as at the time that

complete phrases were about to be closed, or popped. That is,

I the semantic component can provide more useful feedback, at a

10
The acronym RUS, for "Render Unto Syntax", was suggested by

* Dick Burton to indicate that RUS made use of semantic constraints
like a semantic grammar, but still gave prominence to the( syntactic regularities shared across all semantic domains.
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more opportune time, if it is asked whether it is reasonable to

attach some newfound constituent as part of the current syntactic

phrase. At this point, it can also incrementally add to its

developing semantic characterization of the phrase. This allows

immediate useful feedforward - supporting the notion of

"continuously available output". And moreover, when the phrase

is closed (popped), its full semantic characterization is

available, from which its interpretation can be derived.

The RUS parser has provided the framework for a number of

different NLU systems developed over the last several years at

BBN [4, 371. The RUS parser itself is written as an augmente

ttxanit on network (ATN) [71] grammar, which is highly efficient
11

because of its novel control structure 14, 5, 61 and its

translation into an efficient INTERLISP program by a grammar-

compiler [16]. RUS interfaces cleanly with the semantic

component, and the identical grammar/parser has been used in all

systems, independent of the choice of semantic interface and

interpretation mechanisms.

11

The current RUS parser operates without backtracking in a
large number of the difficult cases handled by Marcus' Parsifal
system [36], due to several variations from normal ATN depth
first control structure. Recent work on RUS has involved
providing a generalized, symbolic scheduling mechanism,
straightforward relaxation of syntactic and semantic constraints
for partially ill-forme input, and the ability to use the
semantic component to simultaneously evaluate alternative
attachments for optional prepositional phrases (LUNAR's
"selective modifier placement" facility).
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Within the RUS framework, the interaction between the parser

and the semantic component takes place incrementally as the

parser scans the input string from left to right, one word at a

time. A semantic characterization of each syntactic constituent

is developed in parallel with determining its syntactic

structure, on the basis of constraints on syntactic realizations

of particular semantic meanings. Knowledge developed in the

course of producing this characterization is fed back to control

further action by the parser.

In early RUS-based systems, this characterization was

equivalent to the semantic interpretation of the phrase. In the

current RUS/PSI-KL-ONE system, it is not. Rather, it is based on

the syntactic structure of the phrase and the semantic

interpretation of each of its already assigned constituents -

what we call its synta.tise/m a sape. It is the job of the

syntactic/semantic interface -- one half of the PSI-KL-ONE system

-- to develop this characterization, which in turn determines the

phrase's susceptibility to various classes of interpretation

rules. It is the job of the semantic interpreter -- the other

half of PSI-KL-ONE -- to find these rules and compute an

interpretation. This job, as we shall show in Section 4.3, is

done in an extremely efficient way.

Within the RUS framework the parser and the semantic

component engage in a dialogue consisting of transmissions from

the parser and £epona from the semantic component. Each
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transmission represents the communication by syntax of some

critical incremental hypothesis or decision made in the parsing

process. The information thus communicated is used by the

semantic component in characterizing the utterance, and (since it

is posed as a hypothesis to be accepted or rejected by the

semantic component) provides a means for the semantic component

to give feedback on the semantic plausibility of the syntactic

structure being proposed.

The most common type of transmission is a proposal by syntax

to attach some previously parsed and interpreted constituent

phrase to the phrase currently being analyzed. This interaction

at the time of constituent attachment appears to be critical to

the performance of the overall system. Such atachm1U~nt
12

transmissions propose that some specific functional rlC.ation

holds between a previously parsed and interpreted constituent and

the matrix phrase whose parsing and interpretation is in

progress. The proposal takes the form' of a

matrix Jjbge.1constituent trpe The semantic component either

reet the proposal or Acgqt it and returns a pointer to a

data structure that represents its knowledge of the resulting

12
We use an extended notion of functional relation here that

includes surface syntactic relations, logical syntactic (or
shallow case structure) relations, and relations useful for
determining discourse structures such as primary focus. we talk
about "labelling" a constituent's functional role within a
matrix. For example, a noun phrase (NP) can serve various
functions in a clause, including logical subject (laubj), logical

object (lobj), surface subject (ssubj), and first NP (firstnp).I 76
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phrase. (This pointer is not analyzed by the parser, but is

rather used in the description of the matrix that syntax includes

in its next proposal (transmission) to extend the matrix.) As

noted earlier, the parser is implemented as an ATN, and

transmissions occur as actions on the arcs of the ATN grammar.

The failure of an arc because of a semantic rejection of a

transmission is treated exactly like the failure of an arc

because of a syntactic mismatch; alternative arcs on the source

state are attempted, and if none are successful, a backup occurs.

4.2.2 PSI-KL-ONE

In this cascaded system, the semantic component has two

related tasks to perform:

1. provide feedback to the parser by checking the semantic
plausibility of the proposed functional labels for
hypothesized constituents of a phrase, and

2. build semantic interpretations for individual phrases
to feed forward to the rest of the system.

In PSI-KL-ONE, these tasks are performed separately by two

modules which are themselves cascaded - the syntactic/semantic

interface and the semantic interpreter. Both make use of the

ability of our representational formalism KL-ONE [12, 11] to

represent a virtual, lattice-structured taxonomy of patterns and 1
to provide general inheritance mechanisms within this taxonomy.

The taxonomy is used to characterize efficiently both the

syntactic/semantic shapes of interpretable phrases (what in LUNAR

[72] would correspond to the patterns of its semantic( 77
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interpretation rules) and as allowable ways to rewrite general or

partial shape descriptions into more specific ones. The

inheritance mechanism is used to store the component actions

involved in the construction of a phrase's interpretation from

the interpretations of its constituents (what in LUNAR would

correspond to the action parts of its semantic interpretation

rules).

we introduced the concept of a syntacti/emant.ic shape

specification in terms of the semantic interpretation of the

constituents of a phrase and the syntactically determinable

functional relations by which these constituents were attached.4

For the purposes of building semantic interpretations, as well as

providing feedback to the parser, we are interested in a deeper

or more semantic notion of shape. In such a deep

syntactic/semantic shape description, the-~ relation between a

constituent and the matrix to which it attaches belongs to a set

of .ex.end~e gAA frame or s~emantic relations. A semantic

relation (or se~mantic x.n1p) completely specifies the way in which

the interpretation of the constituent is used in constructing the

interpretation of the matrix phrase.

The feedback provided to the parser from the

syntactic/semantic interface is based on the assumption that

every constituent of a phrase serves some semantic or discourse-

level purpose. in particular, each constituent must contribute

78



Report No. 4785 Bolt Beranek and Newman Inc.

13
to the meaning of the phrase by filling some particular

semantic role. Of course, the mapping of functional labels to

semantic relations is clearly not one-to-one, nor is it

unconstrained. For example, the logical subject of a clause

whose main verb is "hit" might be the age~nt of the act (e.g.,

"The boy hit .") or the instrumnt (e.g., "The brick hit

There are constraints on which functional labels can be

mapped to which semantic roles, and these constraints also depend

on the semantic interpretation of the constituents involved.

Thus, checking the semantic plausibility of a syntactic

attachment proposal involves determining if there is an

acceptable mapping between a proposed functional label and one or

more semantic relations, If such a mapping is not possible, then

the proposed attachment is not semantically plausible.

The PSI-KL-ONE system uses a set of rewrite rules (which we

call rela~tion mapping r~ul~es or RtM1fULs) to specify what mappings

are possible between functional labels and semantic relations.

These rules, which are stored in the taxonomy, indicate the

conditions under which a given functional label can be mapped

into a semantic relation. They thus determine how (if at all) a

*syntactically specified" syntactic/semantic shape description

13
For the moment we lump discourse effects with the semantic

* component, so that we include constituents that have no obvious
semantic purpose, but act only as discourse markers. These can
readily be included in the overall strategy.

* 79
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can be mapped into a more "semantic" one. The pattern of an

RMRULE specifies the conditions under which it matches a

syntactic proposal, in terms of:

o the syntactic shape of the matrix (e.g., "It is a
transitive clause whose main verb is 'run'."), and the
interpretation and semantic role assigned to other
constituents (e.g., the constituent labeled lsubj must
be interpretable as a person, and must be the agent of
the clause"),

o the proposed functional label, and

o the interpretation of the constituent to be added.

If the pattern matches, the proposed functional label

connecting matrix and constituent is replaced with an appropriate

semantic relation. (The syntactic/semantic shape of the matrix

and the interpretation of the constituent may be refined in the

process as well. See Section 4.3.)

Associated with each .emantic relation connecting a

constituent and matrix description are one or more component

actions that specify how the interpretation of the constituent is
14

to be used in building the interpretation of the matrix phrase.

After all the constituents of a matrix have been found and

assigned appropriate semantic relations, the interpretation of a

phrase is built up by executing all of the actions that apply to

14
In our AAAI paper [6] we referred to these rules as

"interpretation rules" or "IRULEs," but in this chapter we
reserve those terms for a higher level abstraction that combines
some of the features of both RMRULEs and actions. We discuss
such IRULEs in section 4.3.
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the phrase. This buys efficiency by rejecting attachments which

have no hope of semantic interpretation, while deferring the

construction of an interpretation until the syntactic well-

formedness of the entire phrase is verified.

I We shall give a more detailed example of the operation of

the RUS/PSI-KL-ONE syntactic/semantic cascade in Section 4.3.

1 4.3 Incremental Recognition

4.3.1 Informal definitions

IIn order to characterize the operation of the RUS/PSI-KL-ONE

system in a way that can be used to highlight some general issues

1 in the design of NLU systems, we introduce the concept ot a

system built as a cascade of incremental recgnition ah.

Informally, recognition involves explaining a set of data in

. terms of some 9 (an object or process) which could account

for or generate it. Since an explanation is itself a description

I (i.e., one is not actually handing over or pointing to the source

object or process), the closest one can come to providing such an

explanation is by desribing the source of the data. Thus, at

I some level recognition involves accounting for one description or

I81
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15
data set in terms of another.

More precisely, recognition is a process that maps an input

descriptio~n, consisting of a set of data expressed in some A±A
16

lanquagge, into an output expressed in some Ja~igr~t langu~age. To

specify a recognition task, one must (at a minimum) give both the

data and target languages, as well as a compatibility relatioQn

between input data sets and output descriptions. In general, for

each input data set there is a non-empty set of compatible

deitiQns in the target language. The simplest recognition

task merely involves finding one such compatible target

description given a data set. A harder task is to characterize,

either extensionally or intensionally, the entire set of such

compatible target descriptions.

Most often however, the goal is to find "the best" such

compatible target description. Intuitively, this description

15
For recognition to be worthwhile, the output description must

have some characteristics that make it a reasonable goal. Where
there is some generally accepted theory or model of the
underlying structure of data sources, that theory provides a
useful target. In general, the output description must merely
be, in some sense, a more n1-aejuj. representation of the underlying
source than the data to be accounted for. The utility of the
output representation depends heavily on the processes that take
it as input. In general, a representation is more useful if it
makes it easier to compute and represent other knowledge, such as
constraints and necessary inferences.

16
Both the input language and target language define sets of

expressions that may be infinite. Moreover, the target language
for one recognition process may be the data language for another.

82



Report No. 4785 Bolt Beranek and Newman Inc.

corresponds to the source "most likely to have generated the

given data." While the compatibility relation is posed as being

independent of the context in which the recognition task is

performed, the likelihood of various sources usually depends on

the context in which the data are obtained. To account for

context, we assume the existence of a separate .ev~alu.ation pLg-aa

that takes an input description and a compatible target

*description and returns a number (say between 0 and 1)

cor responding to the contextually determined godnessa of their

match.

* I Thus, for any particular input description, recognition
involves finding a target description that is compatible with the

input and which matches the input be.tter (in terms of the

evaluation process) than any other compatible target description.

In general, this quality gives recognition processes some flavor

of a "search," although the search may app ar in many guises,

such as sequentially generating and comparing the goodness of

individual descriptions, operating on entire classes of

descriptions seeking to constrain the form of the optimal

description, or actually following some path through the space of
17

descriptions under the direction of a general search algorithm.

17
Note that some problems can be approached as recognition

problems or, alternatively, analysis problems. A good example is
that of fitting a line to a set of points. This can be viewed as
searching for the right line among the space of possible lines
or, alternatively, computing the coefficients for the line
mathematically via regression/Gaussian analysis. Thus not all

recognition problems need be solved with recognition processes.( 83
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The characterization of what it means for a process to be,

in some useful sense, "incremental", depends strongly on the

architecture of the system in which the process is embedded. As

noted earlier, our primary concern is system architectures in

which the optimal target description produced as output by one

recognition process is used as the input to a later process. We

are also concerned with a slight variant of this architecture in

which the evaluation process described above is performed not

* I locally, but by a later process. This variant provides a type of

feedback loop in the overall system. Such feedback allows later

* processes to control the operation of earlier ones, perhaps

* redirecting their search on the basis of knowledge unavailable at

an earlier stage. To implement such feedback, more than one

* compatible target description may be passed along to later

processes, either simultaneously or sequentially, as alternative

hypotheses. Later processes must treat such "hypothesized"

descriptions differently than target language descriptions that
18

are "certified optimal." We shall have more to say about this

architecture in Section 4.3.2.

In both architectures, there are advantages when an earlier

process makes available certain types of partial results as soon

18
This is a plausible way to view some of the interaction

between a syntactic processor and semantic and discourse
processors: a syntactic processor can only suggest a range of
possible attachments for such modifiers as optional prepositional
phrases, while it is up to the semantic processors to determine

the best placement.( 84
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I
as possible - later processes can then generate and feed forward

I output in a pipelined fashion and can also give feedback to the

I initial process, guiding its generation of target descriptions.

Ib.g abilit~y I& MalJg intermediate rPRiLt continuall.1y

avail-able .2 both later and earlier prcese is the fundamental

characteristic of an incremental _Q., and the ability of

those other processes to make good and timely use of such

I information is the measure of the degree of "useful

incrementality" of the overall system. Therefore, any design

decisions for useful incrementality must involve pairs of

g processes. Before we attempt to give a more rigorous

characterization of this notion of incremental computation, we

1 will continue at an intuitive level within the NLU domain.

4.3.2 Informal examples

I RUS/PSI-KL-ONE provide some simple examples of "incremental

recognition". To begin, consider a sentence starting "John ran

j ....". While there are many types of "run" sentences, both

transitive and intransitive, with a variety of different meanings

I - no matter how the above sentence continues, any structural
19

description output will have the feature "subject = John."

1 19
This conclusion cannot be reached after just the first word

"John" has been processed: some extensions compatible with that
will have the feature "subject = John, others "object = John,"etc. Before this feature can be known for certain, at least the
entire auxiliary structure of the sentence must have been

processed.

(I 85
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What advantages follow from feeding this information immediately

* to other processes?

Recall PSI-KL--ONE'S RMRULEs described earlier, which, by

specifying the syntactic/semantic shapes of interpretable

patterns, essentially represent constraints on the syntactic ways

to express certain meanings. They provide two ways in which

information from the parser can be made us-iful. First, their

results can be fed back to guide the growth of the syntactic

tree, and second, they can allow the semantic interpreter to get

started. For example, with a "run" sentence, if the parser can

identify its subject incrementally, as above and pass that

information on to the semantic component, rules may be found for

* constraining the sense of "run" to either transitive (e.g., "John

ran the race," "John ran the computer") or intransitive (e.g.,

"The program ran for 50 seconds on a PDP-ll/60"). These rules

may then be used to generate feedback to the parser, so that, for

example, if the intransitive sense of "run" applies, the parser

does not need to consider arcs leading to a direct object. As

for semantic interpretation, knowing that the subject of "run"

was John guarantees an agentive sense of the verb (with John as

agent), even before one learns the syntactic identification and

semantic characterization of its object.

Notice that this interaction depends on both the parser and

the semantic interface operating incrementally. On the one hand,

the parser must feed forward information on the logical subject
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I
and main verb of the sentence as soon as they can be guaranteed

on the basis of syntactic evidence. On the other, the semantic

interface must immediately determine that in the "program run"

case, for example, the only applicable RMRULEs are ones that

require the main verb "run" to be treated in its intransitive

sense. If the semantic component did not check patterns for

RMRULEs until all potentially relevant information was avail,".le,

it would not be able to feed back constraints to the parser.

Note that we can view the job of the syntactic/semantic

interface as continually refining and restricting the set of

patterns and the set of actions that might possibly be applicable

to the matrix phrase under construction. Its ability to provide

feedback and feedforward depends on its ability to recognize

constraints shared by all remaining rules. It can give

feedforward whenever the set of applicable actions implies that

some property is true of whatever the resulting interpretation

is, assuming that the phrase is semantically coherent. It can

give feedback whenever the remaining set of patterns (RMRULEs) is

empty or resquire that some constraints on future attachm-ts

hold, no matter which rules are finally applied. Notice that as

more is learned about the phrAse, the set of possible patterns

and actions may contract or stay the same, but it never grows.

4.3.3 Local vs. non-local evaluation

We now proceed to give a more general characterization of

"incremental recognition." Consider a process which takes as
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* input a set of data in some data language (e.g., a string of

words in some natural language) and produces an output in some

target language (e.g., a parse tree for some syntactic derivation

of the word string). We further assume that the input is

processed sequentially by the recognition device. Thus, at any

time, the processor has processed some initial sequence, say

* d(l) ... d(k). Now suppose that after some such initial sequence,
20

every coptil extens1 ion had some feature f in the target
21

language .While f might be further refined as a result of

acquiring more data, any actions that later processes can take on

the basis of f will be consistent with whatever the optimal

target language description turns out to be. This is the

situation we discussed earlier, where we noted the benefits of

making such shared, albeit partial information available.

20
We assume for generality that not all sequences of input data

are "valid" -- i.e., not all sequences can be mapped onto a
target language output. (Such sequences might correspond to
syntactically ill-formed word strings). Thus, there are some
sequences for which the device can assign a target language
description (e.g., where d(l)...d(k) constitutes a complete
sentence), others for which any such description is ruled out
(e.g., a word string for which there is no syntactically
acceptable extension), and still others that haven't yet provided
enough information to pin down a description or rule them all out
(e.g., a word string that is the initial segment of one or more
sentences). in the last case, we term "compatible extensions"
those final sequences of data d ...d that allow the

k+1 n
recognition device to assign a target language description to the
whole.

21
E.g., all syntactically well-formed continuations of "The boy

sees..." have the NP "The boy' as firstnp, ssubj, and lsubj.
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There is an extension to this notion that captures an

important aspect of the interaction of RUS and PSI-KL-ONE.

Previously, we described an important variation on the above
architecture in which an earlier process can generate only the

set of compatible target language descriptions for an input. In

such cases, a later process is responsible for evaluation of the

descriptions in the set and selection of the optimal one. In

this architecture, there is often no feature f common to all

compatible descriptions. Thus no single feature can be

"guaranteed correct" and passed along for appropriate action by

later processes. However, the principle of continually available

output can still be applied to this architecture for recognition

as search.

Consider a sirL.ple case of later evaluation and selection,

where evaluation of a target language description is limited to a

0/1 decision (i.e., impossible/possible), rather than spanning

the range between them. Given just an initial sequence of data

there may be no way for the earlier recognition process to

determine on the basis of the data thus far which of several

alternative target language features to assign to it. In such a

case, if another process can make an acceptance/rejection

decision locally And cheply, then it may be worthwhile for the

first process to hypothesize a compatible target language

description and pass it on for evaluation. Using the resulting

feedback, the first process may come to an optimal target

language description faster than it could do so on its own, if

indeed it could come to such a description at all.
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For example, in an active "send" sentence like "Smith sent a

message...," the parser cannot immediately determine whether the

first NP after send is the direct or indirect object. Only after

determining whether there is a "to"-PP or another NP directly

following can that decision be made. However, the semantic

component may well be able to rule out one or the other role

immediately. To take advantage of this semantics capability, the

parser could propose to the semantic component that the NP "a

message" is the indirect object of send. The semantic component

could then reject this proposal on the basis of what it implies

semantically - there is no sense (in the domain being modeled) in

which a message can be sent anything.

This use of other processes to make decisions is not without

its problems. For example, RUS will currently transmit to the

syntactic/semantic interface a proposal to attach a newly

constructed prepositional phrase to a particular open matrix. If

the proposal is rejected, RUS must merely come up with another

syntactically compatible description. However if it is accepted

(i.e., local evaluation of the hypothesis is 1), a problem may

arise. This feature - here, a particular attachment - may not be

shared by all compatible target language descriptions: there may

be alternative values for the feature (i.e., alternative

attachments) whose local evaluation is also 1. In this case, the

later process cannot treat the hypothesized feature in the same

way it would treat a necessarily shared feature, since it may

later be found incompatible with the remaining data. Currently
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I
RUS/PSI-KL-ONE records enough information to allow backup over

hypotheses later found to be incorrect, but it takes advantage of

the fact that the output of the semantic interpreter is not fed

on incrementally to other processes, and hence not much has been

risked. Before closing this section on local vs nonlocal

evaluation, we want to make two further distinctions. The first

concerns ambiguity, and the second, the nature of the description

sent on to other processes. As to the first, in many cases an

initial subsequence of data appears ambiguous because the

recognition device has not yet received enough information itself

to decide among the alternatives. Thus in the "Smith sent the

message" example above, the parser could wait until after it had

verified the nonexistence of a second NP immediately followin.

"the message" to conclude, without semantic feedback, that the

first NP was the direct object.

However, in many other cases, it is clear that no future

input will resolve the problem: as far as the given recognizer is

concerned, there is true ambiguity. For example, as Marcus [36]

has noted, in cases combining both dative movement and WH-

movement of a verb's direct or indirect object (e.g., "Which boy

did John show the cat?," "Which fish did John feed the boy?"),

syntactic evidence alone is not sufficient to make correct direct

and indirect object assignments. The attachment of optional

post-modifiers, such as prepositional phrases and relative

clauses is also a case of true ambiguity for syntax, as is the

determination of quantifier scope [5, 66] a case of true
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ambiguity for semantics. In these cases, it is not simply a

matter of efficiency whether a set of alternatives, or a

hypothesized feature value, is transmitted to other processors -

there is never a point at which the ambiguity is resolvable

within the processor nominally responsible for providing the

class of feature involved.

Finally, we want to distinguish the nature of the

alternative compatible target language descriptions that can be
sent forward. Such a description can take the form of either a

disjunction (with the possibly high cost of specifying all the

disjuncts) or an abstraction. The receiving process is left with

the problem of refining the choice to get the optimum, or in the

0/1 case, the alternatives evaluating to 1. For example, in the

case of PP attachment, RUS could send a disjunction of specific

attachment proposals, or it could send a single "abstract"

proposal annotated with the possible attachment points.

In the design of PSI-KL-ONE, we have endeavored, wherever

possible, to design representations and processes that worked

with abgsxrac rather than disimc.jvz representations. Why is

this the case? As already noted, there is the possibly high cost

of specifying the disjuncts - (1) because there may be many of

them, and (2) because each disjunct is a self-contained unit. on

the other hand, one way of viewing an abstract representation is
22

that it specifies just those releant features that are shared

22

That is, useful for future processing.
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by all the alternatives represented. Features that are not

shared or relevant are suppressed, so that the representation of

the set actually takes less information than the representation

of any single alternative. Such a representation is only

possible where the desired set can be specified as just those

alternatives satisfying the common properties.I
There are also processing advantages to working with

abstract rather than disjunctive descriptions. In general these

advantages have to do with avoiding the case analysis necessary

Ifor processing straightforward disjunctive descriptions. With

fsuch descriptions it is necessary for processes to consider each

disjunct individually and to derive the results of each. Certain

strategies can cut down the amount of repeated work, but these

strategies (such as "memo-izing" common results, as in a parser's

"well-formed-substring table") all exact a certain penalty in

overhead. Moreover, some effort may be required to discover that

the ways in which disjuncts differ are irrelevant to some

computation. There is an advantage if the original process has

knowledge of the way in which features of its outputs will be

used, and can produce representations that factor out useful

shared properties for future consideration. In the next section

we discuss a particular incremental recognition process used in

PSI-KL-ONE's syntactic/semantic interface; this process is based

on an explicit representation of appropriate abstractions within

the target language. It belongs to a class we refer to as the

incremental d i refinment
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4.4 Incremental Description Refinement

We noted in Section 4.2.1 that the job of PSI-KL-ONE's

syntactic/semantic interface was to develop a semantic

characterization of each phrase, in parallel with the

determination of its syntactic structure. That semantic

characterization is not the semantic interpretation of the

phrase, but rather a description that mediates between the output

of the parser and the input of the semantic interpreter. That

description is based on a combination of the syntactic structure
23

of the phrase and the interpretations of its constituents, what

we have called its ynti /smanLic sa. In this section, we

discuss how the interface performs its task using an incremental

* recognition process we call incremental descriptin r efinemgn,

or IDR.

An obvious first question is why have such a mediating

description? The reason is to improve the efficiency of the

semantic interpreter. We noted in Sec. 4.2.2 the relationship

between LUNAR semantic interpretation rules and PSI-KL-ONE's

taxonomy of syntactic/semantic shapes. In LUNAR, the

interpretation of a phrase or utterance depends on the

interpretation r iles whose patterns it matches. The actions of

these rules are executed in some order, to produce a structure

23
They have already been produced by previous interaction

between RUS and PSI-KL-ONE.
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24
representing the interpretation of the phrase. However, a

major portion of the LUNAR interpreter's work is finding the set

of rules whose patterns match the given phrase. This process is

improved by identifying the phrase's syntactic/semantic shape

(and also facilitates feedback to the parser, as noted in Sec.

4.3.2). How is it done?

Viewed as a recognition device, the data language of the

syntactic/semantic interface is (roughly speaking) the set of

syntactic functional descriptions of phrases producible by the
25

RUS parser, while the target language consists of

syntactic/semantic shape descriptions. These are represented as

Individual Concepts within the virtual lattice-structured

taxonomy of KL-ONE Generic Concepts that represent more or less

specific (and/or complete) interpretable syntactic/semantic shape

descriptions. These Generic Concepts correspond to the patterns

of LUNAR's interpretation rules. Efficiency derives from the

taxonomy's making it possible to search in para1.1pl for all

interpretation rule patterns that are compatible with a partially

parsed phrase (and hence, all appropriate IRULEs as well). The

24
For example, in LUNAR the actions of its interpretation rules

often recursively invoked the interpretation process on
constituents of the current phrase in a top down fashion.

25
It is essential to note, however, that these are not purely

syntactic descriptions -- as a result of recursive interaction
between RUS and PSI-KL-ONE, every constituent of the phrase under
consideration by PSI-KL-ONE has already been interpreted.
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only problem is that such searches must be made in conjunction

H with the other task of the interface, that is, providing feedback

to the parser about the semantic plausibility of such syntactic

decisions as constituent attachment and functional labeling.

That task requires the interface to keep track of the set of aU]

syntactic/semantic shape descriptions which might potentially be

applicable to a partially parsed phrase. In general, each new

hypothesized syntactic structure will reduce the size of the set

of compatible descriptions. Semantic rejection is signalled in

just those cases when the set of compatible descriptions becomes

empty.

For example, the pattern informally described as

26
o a clause whose head is the verb "hit", whose logical

subject is interpretable as a movable object, and whose
logical object is interpretable as a physical object

might be represented by the KL-ONE structure in Figure 9.

There is normally a great deal of redundancy in the set of

patterns that forms the il.ft-hAnd-aid. of the interpretation

rules embodied in any semantic interpreter of reasonable size.

The structured inheritance mechanism provided by KL-ONE allows us

to abtrc the common portions of several patterns and to

represent these shared subpatterns as high-level, or abstract,

26
We refer to the main verb of a clause as its head.
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FIG. 9. A SYNTACTIC/SEMANTIC PATTERN REPRESENTED IN KL-ONE.

concepts within the taxonomy of syntactic/semantic shapes. The

structure of these abstract pattern concepts is inherited by all

concepts representing more specific patterns.

Thus, for example, the two patterns:

o a clause whose head is the verb "hit" and whose logical
subject is interpretable as a movable object

o a clause whose head is the verb "hito and whose logical
subject is interpretable as an animate being

I share the common part

I o "a clause whose head is the verb "hit."

In KL-ONE we would represent this shared pattern by a common
27

super-concept, as in Figure 10

27
2 To red ice clutter, we have left out several SuperC cables to

t e Conc- .NP.
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HEAD UBJB

CLAUSE , HIT-CLAUSE

LSUBJ LSUBJ

ANIMATE- MVBE

AGENT-NP BETN

FIG. 10. PATTERN SHARING REPRESENTED IN A PIECE OF A KL-ONE
TAXONOMY.

The set of pattern-action rules making up the underlying

knowledge basis of a semantic interpreter has even more shared

structure. Many rules share common actions. These actions are

expressed as ways of mapping from the part of the structure

matched by the pattern of the rule to components of the result

produced by the rule. Because a finite set of interpretation

rules (such as LUNAR's or PSI-KL-ONE's) must apply to any of a

potentially infinite set of interpretable phrases, the pattern in

each rule must match a large class of phrases. This match is

commonly accomplished by having variable elements in the pattern,

each of which stands for some portion of the phrase that

satisfies a given predicate. Often this element is a syntactic

constituent of the phrase, or a constituent of some
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28
constituent. The predicate generally consists of the functional

label by which the constituent is attached, as well as some

characterization of the constituent's semantic interpretation.

The action portion of each rule generally mentions one or more of

the variables in the pattern portion, and it uses the semantic

interpretation of the constituent bound to the variable in the

constructing of the interpretation of the phrase as a whole.

Rules whose patterns share common substructures, often share

the way in which the variables in the common substructure are

mapped into components of the resilting interpretation. This

sharing is codified in the notion of semantic relations (which

correspond to pattern variables) and EB.ULE. in PSI-KL-ONE.

This process of keeping track of the set of

syntactic/semantic shape descriptions compatible with a partially

described phrase is an example of a more general class of

incremental recognition processes, which we refer to as the

Inrnal Decito Refinemen~t (IDR) processes. Informally,

IDR is a process of

o determining the set of target language descriptions
compatible with an object or event known to have a given
set of properties, and

o refining that set of descriptions as more properties are
learned.

28
LUNAR tagged constituents of interest with integers, so that

one talked of "match 1", "match 2", etc.
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The significant feature of IDR is that these compatible

description sets are represented intensionally. Viewed as

intentional representations, at least three well-known methods -

decision trees, constraint propagation and version spaces - are

types of IDR process. In this section, we show how these methods

are IDR processed, and then describe the taxonomic lattice-based

IDR process that forms the basis for the syntactic/semantic

interface in PSI-KL-ONE.

In an IDR process, one is always working with the c l

set of descriptions compatible with the currently known

properties of an object - what we'll call its de xciptiye cover

or Eg.erng set. As one learns more about an object, its

covering set must either shrink or stay the same. Hence the

basic steps of any IDR process involve:

1. starting with a set of properties P and the covering
set C(P) compatible with those properties

2. when P is extended into a larger set P', computing
C(P') by removing inapplicable elements from C(P).

The difficulty is that it is usually impractical, if not

impossible, to represent C(P) extensionally: in many cases C(P)

will be infinite. (For example, if one considers parse trees as

target language descriptions of word strings, until the length of

the string is known, the number of parse trees in C(P) remains

infinite (or 0), no matter how many words in the string are

already known.) Thus, a covering set used in an IDR process must

be represented intensionally, with the consequence that "removing
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elements" becomes an inference process that determines the

intensional representation of C(P') given the intensional

representation of C(P). Note that just as any element of C(P),

represented extensionally, may be structured, the intensional

j representation of C(P) may be structured as well.

The trick in designing an efficient and effective IDR

process is to choose a synergistic inference process/intensional

representation pair. One example is the use of a discrimination

tree. In such a tree, each terminal node represents an

individual description, and each nonterminal node represents the

set of descriptions corresponding to the terminals below it.

Every branch indicates a test or discrimination based on some

property or properties of the object to be described. Each newly

learned property of an object allows the IDR process to take a

single step down the tree, al iJg aa th properties rZe learned

in An order cmpatbe with .the tXe'a AtX1Lctar.. Each step thus

reduces the set of descriptions subsumed.

Another IDR process is the operation of a constraint

propagation system [35, 64, 67]. In such a system a known object

can be specified in terms of its relevant features, their values,

and any dependencies (constraints) among the values assumable by

particular subsets of features. Graphically, any such object

specification can be represented as a set of nodes corresponding

to different featuires, each labeled with its corresponding value.

Nodes/features are linked together with those on which they
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depend. Essentially then, a constraint relation specifies which

pairs of labels can occur ,on adjoining or, linked, nodes.

When the system is presented with a new and unknown object,

it begins by creating a structure that has a set of labels for

each feature. As it learns things about the object, it pares

down certain feature sets, which by the a priori constraints may

cause others to be pared down in turn. At any point, a

descriptive cover is simply the cross-product of the node label

sets. The refinement operation consists of:

1. extending the analysis to a new node to learn more

about it

2. eliminating now incompatible labels

3. removing all incompatible labels from adjacent nodes

4. propagating the effects.

Unlike the use of a discrimination net, cn.trint pro agation

s no e guir thatb informatign about n b cnidexed in

some a piori fixed order.

A third type of IDR process is Mitchell's "version space"

approach to concept learning [39]. Concept learning involves

forming a general description of a class of objects giver a set

of examples and nonexamples. In the version space approach, the

covering set of all and only those general descriptions which

account for the distribution of positive and negative examples

thus far seen by the system is represented by
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1. a set S of maximally specific concept descriptions -
i.e., ones more specific would exclude the observed
positive instances

2. a set G of maximally general concept descriptions -
i.e., ones more general would include the observed
negative instances.

As more training instances are presented to the system, S will

either expand or stay the same, and G will either shrink or stay

the same, until S and G contain one and the same concept

description and the concept is learned.

Mitchell also notes the value of being able to use

incompletely learned concepts - i.e., intermediate results.

Since it is rare for the available training instances to describe

precisely the target concept, it is useful to be able to classify

at least snmp new (nontraining) instances with certainty, without

having a precisely specified target. This, his S and G sets

provide. That is, if the new instance matches every element in

S, it can be classified with certainty as a positive instance of

the target, and conversely, if it matches no element of G, it is

with certainty a negative instance. Concept learning is almost

the mirror image of the recognition processes that are our major

interest, but as the above comparison shows, the ODR notion is

appropriate to this area as well.

In PSI-KL-ONE's syntactic/semantic interface, the set of

properties that one can learn about an object consists of

descriptions of constituents and their functional relations to

their matrix. Unfortunately, surface variations such as passive

103



Bolt Beranek and Newman Inc. Report No. 4785

forms, wh-movements, and others make it difficult to assume any

particular order of discovery of such properties as the parser

considers words from left to right. The recognition task in this

* case is one in which

o the order in which information will be presented to the
system is not determined beforehand

o the objects to be recognized are not only structured,
but of varied structure.

The first property makes discrimination nets an inadequate

recognition method, if we are going to hold to providing

continually available output. And the second property makes

constraint propagation inadequate, since we cannot postulate a

rinri. a fixed structure to be recognized, whose multiple

alternative node labelings must be reduced to a single consistent

set. Rather we need to be able to "grow" the appropriate

structure and reduce the multiplicity of its labelings as the

recognition proceeds.

To meet these constraints we have developed an IDR process
29

called TAXLADR2 which forms the basis of the syntactic/semantic

interface in PSI-KL-ONE. Simply put, TAXLADR uses KL-ONE's

taxonomic lattice structure as a genr.aization 2L a

discrimintin tre that i order-indepndent. The actual

operation used in TAXLADR also involves an extended notion of

29

For "Taxonomic Lattice Description Refinement".
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constraint propagation operating on nodes of the lattice, and

thus the system has interesting analogies to both simpler forms

of IDR process.

We introduce the description of the activity of the

syntactic/semantic interface IDR by giving a simplified example

of the interaction of RUS and the interface in the next section.

We then indicate some of the difficulties with the

straightforward approach taken in the example and discuss some of

the features needed in the actual IDR algorithm.

4.4.1 An example of the cascade

As a simplified example of the parser-interpreter

interaction and the use of the KL-ONE taxonomy of

syntactic/semantic shapes in this interaction, we will briefly

describe the process of parsing the clause "John ran the drill

press." The simplified ATN grammar we use for this example is

shown in Figure 11.

FIG. 11. A SIMPLIFIED ATN.
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The simplified taxonomy for our example is given in Figure

12. 0 In the taxonomy, any CLAUSE whose head is the verb "run"

(independent of tense and person/number agreement) is an example

of a RUN-CLAUSE. There are two classes of RUN-CLAUSEs

represented in the taxonomy - those whose lsubj is a person (the

PERSON-RUN-CLAUSEs), and those whose lsubj is a machine (the

MACHINE-RUN-CLAUSEs). The class of PERSON-RUN-CLAUSEs is again

subdivided, and its subclasses are RUN-MACHINE-CLAUSE (in which

the lobj must be a machine), RUN-RACECLAUSE (in which the lobj is

a race), and SIMPLE-RUN-CLAUSE (which has no lobj).

If we get an active sentence like "John ran the drill

press," the first stage in the parsing is to "PUSH" for an NP

from the CLAUSE network. For simplicity we assume that the

result of this is to parse the noun phrase "John" and produce a

pointer to NPI, an Individual Concept which is an instance of the

Generic pattern PERSON-NP. This is the result of interaction of

the parser and interpreter at a lower level of the ATN.

Since it is not yet clear what role NPI plays in the clause

(because the clause may be active or passive), the parser must

hold onto NPl until it has analyzed the verb. Thus the first

transmission from the parser to the interpreter at this level is

the proposal that "run" (the root of "ran") is the head of a

CLAUSE. The interpreter accepts this and returns a pointer to a

new Individual Concept CLI, which it places as an instance of

30
To reduce clutter, we have left out several superC cables to

the Concept NP.
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31
RUN-CLAUSE.

Since the parser has by now determined that the clause is a

simple active clause, it can now transmit the proposal that NPl

is the lsubj of CLI. Because NPI is an instance of a PERSON-NP,

the interpreter can tell That it satisfies the restrictions on

the lsubj of one of the specializations of RUN-CLAUSE, and thus

it is a semantically plaisible assignment. The interpreter fills

in the lsubj Role W? LI with NPl and connects CLl to PERSON-RUN-

CLAUSE, since that is the only subConcept of RUN-CLAUSE which can

have a PERSON-NP as its Isubj.

Finally, the parser PUSHes for an NP, resulting in a pointer

to NP2, an instance of MACHINE-NP. This is transmitted to the

interpreter as the lobj of CLl. Since CLI is a PERSON-RUN-

CLAUSE, the taxonomy indicates that it can be either an instance

of a RUN-RACE-CLAUSE Qr a RUN-MACHINE-CLAUSE, Dr a SIMPLE-RUN-

CLAUSE. Since NP2 has been classified as an instance of MACHINE-

NP, it is not compatible with being the lobj of a RUN-RACE-CLAUSE

(whose lobj must be interpretable as a race). On the other hand

NP2 is compatible with the restriction on the filler of the lobj

Role of RUN-MACHINE-CLAUSE.

31
Actually, the interpreter creates a Generic subConcept of

RUN-CLAUSE, in order to facilitate sharing of information between
alternative paths in the parse, but we will ignore this detail in
the remainder of the example.
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We assume that the taxonomy indicates &U the acceptable

subcategories of PERSON-RUN-CLAUSE. Thus it is only semantically

plausible for NP2 to fill the lobj Role of CLI if CLi is an
instance of RUN-MACHINE-CLAUSE. This being the case, the

interpreter can join CLI to RUN-MACHINE-CLAUSE and fill its lobj

Role with NP2, creating a new version of CLI which it returns to

the parser.

At this point, since there are no more words in the string,

the parser transmits a special message to the interpreter,

indicating that there are no more constituents to be added to

CLI. The interpreter responds by finding the IRULEs inherited by

CLI from RUN-MACHINE-CLAUSE, PERSON-RUN-CLAUSE, etc., and using

the actions on those IRULEs to create the interpretation of CLI.

It associates that interpretation with CLl and returns a pointer

to CL, now a fully parsed and interpreted clause, to the parser.

4.5 Extensions to RUS and PSI-KL-ONE

In the version of RUS and PSI-KL-ONE currently in operation,

the feedback given the parser by the semantic component can only

cause the parser to continue or reject a path on the basis of

semantic incoherence. However, RUS now has a generalized

scheduling structure, which should allow more informative

feedback. At the simplest level, semantic processes might extend

the notion of acceptance into two cases -- "You're all right -

keep going", or "I've now filled in everything I think I could

know about one of these - make popping a preference").
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4.5.1 Best-first strategies

As we noted in Sec. 4.4, the goal of a recognition process -

jin our case, natural language understanding - is to come up with

the best possible description of the input data. Clearly, this

is not what RLS/PSI-KL-ONE currently does: its output is the

* first semantic interpretation found compatible with the input

data, not necessarily the best one. The only procedure we know

of that formally guarantees that the first target language

description found for the data will be the best one according to
32

some evaluation metric is Woods' Shortfall Algorithm Woods82.I

* This algorithm depends on being able to (1) approximate the best

possible score achievable by a complete description and (2)

assign to a partial description the best possible score

achievable by any compatible extension. Whether it is possible

to find the kind of overall~i "goodness metric" for RUS/PSI-KL-ONE

that the algorithm requires demands further study.

4.5.2 Comparative evaluati-on

Recall that in the current control strategy, the parser

explores a single path at a time, only transmitting to the

semantic component individual proposals that are consonant with

that theory. An alternative strategy more in line with the

32
The standard admissible search algorithm only guarantees that

the first path found to a goal will have the lowest cost, again( according to some evaluation metric.
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requirements of a best-first algorithm involves considering

several paths in parallel, transmitting to the semantic component

a set of proposals. This strategy is now possible using RUS's

generalized scheduling structure. Given a continuous evaluation

I function, the semantic component might be able to rank order that

set by how good the various (partial) matrix interpretations

continue to be. (Whether such local goodness implies continued

global goodness is a matter for investigation.) But even lacking

a continuous evaluation metric - using only accept/reject

I decisions -the resulting partition of the set of possibilities

might provide useful direction to the parser about the best way

I to continue.

I One place where it is important to be able to compare

alternatives is in the attachment of modifiers, such as

prepositional phrases. Here we can take advantage of RUS's

scheduling structure's ability to identify all the possible

syntactic matrices available for further constituent attachment

I b*Lp Jhg constituent il actually constructed. After it is

constructed, we want to be able to ask the semantic component to

rank these alternative attachment points by how good the various

(partial) matrix interpretations continue to be. This is a form

of selective modifier placement [721 that does not require extra

I machinery on the part of the parser.
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4.5.3 Communication lines

PSI-KL-ONE's communication with processes further down the

line is also in a very rudimentary state with respect to

embodying an incremental process. Currently, it does not provide

any information to later processes until it has its entire input

from RUS. However, the target language description produced by

PSI-KL-ONE does allow for abstract descriptions of an utterance's

quantificational structure, given that this structure may not be

resolvable by the semantic component alone.

Since the intermediate results produced in PSI-KL-ONE are

represented in KL-ONE, the same language as is used by later

components, it is possible that intermediate stages could be made

available to those components. These stages would allow semantic

processing to receive feedback from discourse processes, as well

as to improve the speed at which the interpreter could furnish

information or requests to processes further down the line, such

as a discourse modeler [681, a focus machine [61], a plan

recognizer or a response generator. (Such pronouncements or

requests might include "There's a definite pronoun filling this

case - any suggestions?" ..... ).

4.5.4 The impact of RUS and PSI-KLONE on the rest of the system

In this section we have indicated how RUS and PSI-KLONE play

two important roles in the NLU system:

o they provide an efficient, practical means of converting
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the user's linguistic inputs into the KL-ONE
representation of semantics that is the basis for the
processing performed by the rest of the system,

o their interaction provides a model for the architecture

of the system as a whole.

I Our goals for RUS and PSI-KLONE stem from these two roles.

The first line of work we plan to follow will make RUS/PSI-KLONE

I an even more effective interface by (among other things):

Io making it easier for people other than linguists and
programmers to extend the range of vocabulary and
semantic interpretations which can be handled by the
system,

o extending the range of grammatical phenomena covered by
j the RUS parser, and providing clear documentation of

that coverage,

o making it possible for the system to provide reasonable
I responses to input which contains grammatical errors,

unknown vocabulary or unknown grammatical constructions,

o improving the efficiency of the parsing/interpretation
process by allowing the semantic component (and possibly
various discourse level components) to provide
preference information that will determine the order in

which parses are generated.

I The other major line of research will be to lay out a more

complete architecture for the entire NLU system based on the

I ideas of incremental recognition and continuously available

output described in this section.

4.6 User Interface for Input for the Dictionary System

by M. Bates( I During this year a new facility has been developed to aid in
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the building and maintenance of dictionaries for the RUS parser.

This package has the following features:

o The user does not have to be familiar with the internal
structure of the dictionary entries to define or edit
the definitions.

o In most cases, the user does not have to know the
meaning of the grammatical terms used (e.g., past
participle, passive) because explanations are available.

o Multiple dictionaries can be maintained and used at the
same time, thus allowing "patch" files and special
purpose entries to be used with a standard dictionary
without modifying the standard dictionary file.

o Dictionary entries are maintained on hash files. This
means that the entries are loaded into core only as they
are actually used, allowing the development of much
larger dictionaries than would be possible otherwise.

o Wherever possible, user input is constrained to be one
of a small set of legal information or is checked to
ensure that it is of the proper form. This stza.
minimizes the possibility of creating incorrvk.L entries.

o An analysis package can be used to print a listing of
information about the entries in a dictionary as well as
the entries themselves. For example, a list of verbs
that do not take complement structures is given, so that
one may easily scan the list for errors.

o Users can define new syntactic categories and features
while making dictionary entries, a feature that allows a
great deal of latitude in the information associated
with any word.

In addition to the dictionary package, we have begun to

develop a semantic rule entry procedure that will take

information from the dictionary, add some of the concepts and

roles necessitated by the entries to a KL-ONE network, apd then

interact with the user to determine the additional KL-ONE

structures needed to complete the representation of the semantic

rules.
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4.7 Dictionary Changes

The main dictionary in use by the RUS system had its origins

in the Lunar system. We have removed many of the terms specific

to geology (for example, BE and AS, which stood for beryllium and

arsenic), and we have added a large number of new words. The new

words fall into three categories: closed class words

(prepositions, pronouns, etc.), frequently used Ena~ib words

(about the first 1000 from Kucera and Francis' book Computational

oRlD yf ay in English, Brown University Press,

1967), and words encountered in sentences used to develop the

parser (for example, the verbs in Quirk and Greenbaum's book

Concise Grammar D Contemporary Englis that take complement

structures. The dictionary now has about 3500 entries).

The goal of the dictionary development, which is nearly

achieved, is to provide a basic dictionary with all of the closed

class words of English and enough of the common words in other

categories to (1) provide enough data to test all facets of the

grammar and (2) permit users in any domain to use the RUS system

without having to define more than a few words per sentence.

The following section provides detailed documentation of the

dictionary input and maintenance system, followed by a transcript

illustrating the system in use.

I
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4.8 Dictionary Package Documentation

The dictionary package allows a user to create, edit, and

save dictionary definitions for the RUS parsing system without

having to know the details of how the definitions are

represented. It also allows words to be filed on hash files to

save space in core and still allow efficient access.

Definin Wod

The function MakeNewWord[word] is used to create the

dictionary definition of the given word via an interactive

question/answer protocol. This function is invoked when it is

called directly by the user or when the parser encounters an

unknown word in its input sentence. The word is always upper-

cased, even if the user presents the argument in lower case.

If you type a ? to most of the prompts in the dialogue, a

list of legal inputs or an explanation of what is being requested

will be printed.

The following questions are asked about all words:

o "Part of speech:" The options here are as follows:

HELP will print some information explaining the
choices.

NEW-POS means a new part of speech not already on
the CATEGORIES list.

LIKE-OTHER-WORD allows you to enter a second word.
The word being defined receives a copy of the
definition of that word. This is useful even if
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I
the definitions aren't exactly identical, since it
might be easier to edit the copy than insert the
complete definition from scratch. The second word
need not be in core, and it does not have to be
typed in upper case. (All parts of the dictionary
package, unless otherwise noted, try to read
definitions from dictionary files when needed and
automatically upper case all user input.)

NONE means that none of the current CATEGORIES
apply. (There is a category called SPECIAL that
should be considered instead of NONE, if you want
to make that distinction.)

The other possibilities are the parts of speech in
the list CATEGORIES.

For some parts of speech (e.g., SPECIAL, CONJ, NPR) nothing

more that has to be specified. For others (e.g., N, V, PRO) a

specific sequence of questions prompts for further information

about the category. If you are not sure what the questions mean,

type a ? for help.

For adjectives, the choices for the type of adjective are

the following:

o MORE-MOST means that the word being defined is a root
that is inflected by preceding it with the word "more"
or "most"

o ER-EST means that the word is a root that is inflected
by adding "er" or "est"

o R-ST means that the word is a root that is inflected by

adding "r" or "st"

o *ER-*EST means that the word is a root that is inflected
by doubling the last letter and adding "er" or "est"
(like BIG)

o IRR means that the word is the root of an irregular
adjective (like GOOD); you will be prompted for the
comparative and superlative forms
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o INFLECTED means that the word is an inflected form of an
adjective (e.g., BETTER or NICER); you will be prompted
for details.

For adverbs, you will be asked only if the word is a

negative adverb (e.g., BARELY)

For each noun, you will be asked its type.. The noun types

are:

o S if the word is a root that pluralizes by adding "s"
(like BOY)

o ES if the word is a root that pluralizes by adding "es"
(like BOSS)

o MASS if the word does not pluralize (like MILK)

o IRR if the word is a root with an irregular plural (like
CHILD)

o INFLECTED if the word is a plural form (e.g., CAVES,
CHILDREN); you will be prompted for the other
information associated with the word.

For prepositions, you will be asked only if the word is a

bare preposition, that is, one that can appear without an object

noun phrase, such as UP and HERE.

For pronouns, you will be asked for the number (singular,

plural, or both) and the case (subject, object, or both).

For verbs, you will be asked the type of verb. The verb

types are the following:

o S-D if the word is a root inflected like GAUGE

o S-ED if the word is a root inflected like LEARN
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o ES-ED if the word is a root inflected like KISS

o IRR if the word is an irregular verb like GO, WENT or
SEE; you will be prompted for the root of the verb and

its conjugation
0 INFLECTED if the word is an inflected form (like GIVES

or HAD); you will be prompted for the other parts.

When this information has been collected about a verb,

information about the features of the verb will be gathered.

Every verb must be transitive or intransitive (or both);

transitive verbs may or may not take a direct object and may or

may not be made passive. Explicit questions are asked for each

of these features. If the verb takes particles, they may be

either regular particles or immovable particles. Finally the

system will ask "Does it take any complements?" If the answer is

y., you will be allowed to choose one or more features from a

list. (You can see the list by typing a ?.) In the future, more

structure will be provided here, as some of the features aren't

really complement features and some are dependent on others, but

for now you can choose any subset. When you have finished

entering features, type END to the > prompt.

When the information specific to each category is complete,

the system continues with general questions:

o "Does this word have any more parts of speech?" If you
type y. you will be prompted for the next part of speech
and its related information. As many categories as you
wish can be entered this way. When you answer n, it
will go on to the following questions. If you answer
Quit, it will skip the following questions.

o "Any compounds?" asks whether the word is the first word
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in any compound phrase that ought to be condensed into a
single word. If you answer y, you will be prompted for
the list of words forming the compound phrase; it
doesn't matter whether you include the word being
defined in this list or not. Then you will be asked for
a single word to replace the phrase. Because one word
might participate in several compound phrases, you will
be asked "Any compounds?" until you answer n.

o "Any multiples?" asks whether the word starts any
multiple word phrases that ought to be replaced by
another multiple word phrase. That is, multiples are
like compounds but result in a substitution of a list
for a list rather than a word for a list. If you answer
y you will be prompted first for the original list and
then for the replacement list, and the "Any multiples?"
question will be repeated until you respond n.

o "Any substitutions?" asks whether another word or a
list of words should be substituted for the word being
defined whenever it is encountered in the input string.
If you answer y, you will be prompted for that list.
Because one word might have several possible
substitutions, you will be asked "Any substitutions?"
until you answer n.

At this point, the definition of the word will be printed,

followed by the question "Do you want to edit the word?" An

answer of y will put you into the word editor (see below) to

allow you to correct the definition of the word.

Finally, the function asks whether you want to file the word

on a dictionary file. It will list the dictionary files that are

open, with parentheses around the file(s) in which the word

already resides. If you specify that you want it filed, the word

will be added to the dictionary file immediately (see the

Dictionary Files section below).

0Words
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Several functions can be used to see the definition of a

word, part of the definition, or whether the word is known to the

system.

PrintWord[word] prints the definition of the word on the

primary output file (usually the terminal). It loads the word

from a file if necessary. (Whenever a word is not in core when it

is needed, the DICTFILES list is searched, starting with the most

recently opened file, until the word is found. See the

Dictionary Files section below.) If the word is undefined, it

prints a message to that effect.

MAKEKNOWN[word NoRequestFlg] is a predicate used to test

whether the definition of the word is available to the parser.

If the definition is already in core, it returns T immediately,

otherwise it tries to load the word from a dictionary file. If

it succeeds, it returns T. If it fails and NoRequestFlg is T, it

returns NIL, otherwise it calls MakeWordKnown to interact with

the user to get the definition.

Category?[word cat] is a predicate to test whether the given

word can be in the indicated syntactic category. It is assumed

that this function will be used primarily by the grammar, hence

the word will already be in core. That is, this function assumes

that MAKEKNOWN has been called on the word and it only looks for

the definition in core; it will not read the word from any

dictionary file.
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Feature?[word feature] is a predicate to test whether the

given word has the syntactic feature. It also assumes that

MAKEKNOWN has been called previously.

FeaturesOf[word] returns a list of the features of the word.

It also assumes MAKEKNOWN has been called.

StatusOf[word] prints information about whether the word is

known or not, what file(s) it is assigned to, which file it has

been loaded from, and which file(s) it should be written on if it

has been edited.

Editig Words

To change the definition of a word once it has been created,

use the function EDITW[word]. This is the only way to change the

definition of a word. If the word is not in core at the time it

is edited, the definition is read from a file; if the word is not

on any dictionary file, an error message is printed. The editor

will print the definition of the word and ask, "Want to Change,

Delete, Add, File, or Quit?" File and Quit both indicate that

you are satisfied with the definition of the word and wish to

exit from the word editor, but File indicates that you want the

word to be filed immediately, while Quit indicates that you do

not want to file it now. Delete is used to remove one of the

existing properties of the word. Add is used to add a property,

and you will be prompted for the value of the property just as if

you were defining that part of the word for the first time.
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Change is a dangerous command, since it puts you into the

Interlisp editor with the current expression set to the value of

the property you have elected to change; you can make any edits

you wish, but there is no way for the system to ensure that the

resulting structure is legal, hence, you can create structures

that will cause problems later. Use the Change command only if

you are sure you understand the internal representation of the

kind of property you are changing. Use Delete and Add otherwise.

Each time you make a modification to the word, the

definition will be redisplayed along with the question, "Change,

Delete, Add, File or Quit?"

DitoayFiles

Any number of dictionary files can be open at the same time.

Each time you open a dictionary file (see below) the file name is

placed on the front of the list DICTFILES. Whenever it is

necessary to load a word from a file, the files in DICTFILES are

tried one at a time until the word is found. Thus, a more

recently opened file takes precedence over a previously opened

file. The purpose of this mechanism is to allow patch files that

override an existing file. You can rearrange the order of

DICTFILES by editing it if you want, but do NOT delete or add any

file names directly (use CloseDictFile or OpenDictFile instead).

Opening And CiFng Dictionary Files

Normally, you should never have to do either of these
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operations. When you assign a word to a file after calling

FILES? (see below) the file will be opened automatically. Clever

advice to SYSOUT remembers the status of dictionary files when a

sysout is made and reestablishes that status when the sysout is

restarted. If you have deleted the dictionary file, created a

new version, or otherwise taken the files out of sync, the

dictionary package will detect the difference and try to figure

out the most likely thing to do. It will then ask your

permission to use another file (or inform you that the file is no

longer available) by a message that begins ***** PROBLEMS WITH

HASHSET FILES *****.

CetnDitoayF iles

The easiest way to create a dictionary file from scratch is

to call CreateDictFile[filename] and then call MakeNewWord[word]

for each new word. If the new dictionary file is the only one

open, you will be asked upon the completion of each definition if

you want the word filed there. If several dictionary files are

open, you will be asked to select the file on which the new file

should go.

You can also create a new dictionary file after you have

defined some words by calling CreateDictFile[filename wordlist],

in which case the given words will be put on the file that is

created. You can also create a new dictionary file after you

have defined some new words by calling FILES?, which will ask you

if you want to see what has changed in the dictionary. If you
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answer y, the system will print all the words that have not been

assigned to any file yet and will ask you if you want to say

where they go. If you again say y, the words will be displayed

one at a time (like functions that you have defined and not

assigned to files) and you can type any one of the following

responses to each:

] -- means nowhere; throw the word away.

CR -- means ignore for the present
LF -- means use the same response as for the previous word
filename -- means assign the word to that file; it will ask

for confirmation if the file is a new dictfile.

After assigning the words to the correct file(s) this way,

you must call FileDict[filename] to have the words actually

stored on the file (just as you must call MAKEFILE after

assigning functions and vars to files with FILES?).

MoveWord[word fromfile tofile deleteflg] can be used to move

a word from one file to another. If DeleteFlg is on, the word

will be marked for removal from the FromFile. The word is only

assigned to the ToFile, not actually written to it until you call

I FileDict.

FileDict[filename] will always ask "Want a new version?".

IIf you answer y., you will get a copy of the old version, with the

j additions made to the copy. If you answer n, the definitions

will be added to the old version of the file, gradually making it

j larger and larger. Do not interrupt the program (e.g., with a

control-D) while it is writing to a dictionary file; it may leave
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a half-written expression on the file that makes it impossible to

read.

Making A Readable Dictionary tile

The dictionary files created by the system cannot be listed

on the line printer or typed on a terminal. To get a version of

the file that people can read, use the function

MakePrettyFile[dictfilename prettyfilename cleanflg

extrainfcflg]. The first argument is the name of the dictionary

file to be prettified, the second is the name of the file to be

made. Cleanflg controls whether the definitions are to be erased

as they are printed on the pretty file; since the pretty file

must be made by reading in each definition from the dictionary

file, it is probably a good idea to have this set to T,

especially if you are short of space. If ExtraInfoFlg is on, the

system will accumulate a list of all the words in each category

and all the words with each feature, and will print out this

information (a sort of cross-index) at the end of the pretty

file).

When you make a dictionary file using CLEANUP, you will be

asked if you want a pretty file made as well. Keep in mind that

since each word has to be read from the dictionary file and

written to the pretty file, making a pretty file can be time

consuming.
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The whole purpose of having words stored on a file and read

in, as needed is to save space but as words are read in, the

internal memory may get crowded. There are two ways to recover

space in your working set.

CleanWords[] deletes the in-core definitions of all the

words it knows that have been loaded in from dictionary files.

It asks whether to erase words that are newly defined and hence

not on any file yet.

CleanWord[word] deletes the in-core definition of the given

word. Neither of these functions alters what is on any

dictionary file, but both functions will destroy definitions that

have been edited but not yet saved.

DeleteWord[word files] deletes the word from the file or

files given.

Miscrellaneous Useful NLes

WordsKnown[] returns a list of the words that currently have

in-core definitions, including words that have been read from

files, newly defined words, and edited words.

NewWords is a list of the words that have been defined but

not assigned to any file.

EditedWords is a list of the words that have been edited.

(This is not actually used by the system.)
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DICTFILES is a list of the dictionary files currently open. r
This concludes the dictionary system documentation. The

following transcript illustrates a user's interaction with the

dictionary package in defining a new word. The user's input is

underlined.

MakeNewWord(BEAR)

Part of speech: n
Type of noun: a

Does BEAR have any more parts of speech? yes
Part of speech: v
Is BEAR the root form? yes
How is it inflected? irr
Now we must conjugate the verb. First, present tense:

I bear
you bear
it bears

What is the past tense form? bore
What is the past participle (I have ...) ? borne
What is the present participle (...ing)? bearing
Now we will get the features of the verb BEAR.
Is it intransitive, i.e., can it appear without an object? no
Is it transitive, i.e., does it take a direct object? yes
Is it passive (e.g., He was hit by a car)? yes
Does it take an indirect object? yes
Does it take any particles? yes

Enter particles as (particle newverb) or a list of such pairs.
Regular particles: Lout bgarLQLL
Immovable particles:

Does it take any complements? yes
Choose all of the complement features that apply:
>intranstocomp
>fortoomp>And

Does BEAR have any more parts of speech? no
Any compounds? yes

List of words forming compound phrase: (bear hugl
Single word to replace ' rase: b.Ar-ug
List of words forming cumpound phrase:

Any multiples? no
Any substitutions? no

Here is the definition of the word:

[BEAR
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FEATURES (FORTOCOMP INDOBJ INTRANSTOCOMP PASSIVE TRANS)
COMPOUNDS

(BEAR HUG) => BEAR-HUG
N -S
PARTICLES ((OUT BEAR/OUT))
V (BEAR (PNCODE X3SG)

'TNS PRESENT)

(UNTENSED))]

Do you want to edit the definition of BEAR? no
Want BEAR, BEARS, BORE, BORNE and BEARING filed on
DPATCH or (HASHDICT): IASHDICT

{The system would go on at this point to elicit the definitions
of BEAR/OUT and BEAR-HUG, if they were not already defined.}

I
, I
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5. RESEARCH ON DISCOURSE TOPICS

In this chapter we report on research in three topics in

discourse understanding: models of the recognition of speaker

meaning, investigations into referent identification as a planned

action, and approaches to interpreting one-anaphora. We discuss

each in a separate section. These topics are especially valuable

because they span the problems of (1) what the speaker wants a

system to do, as stated in his utterances (2) how a system can

distinguish phrases that are meant to refer from those that are

purely descriptive, and (3) how a system can understand various

anaphoric phrases.

5.1 A New Model of Speaker Meaning

by C. L. Sidner and D. J. Israel

5.1.1 Introduction

In speaking conversationally, people expect their partners

to recognize their intentions, so that their partners will be

able to respond appropriately. In the first part of the scenario

in Chapter 3, the speakers encoded their intentions in a variety

of sentence types. Instead of telling the hearer what to do, the

speaker stated his goals, and expected at least a partial

response. The sentence forms he used were not simply commands,

but rather declaratives that describe a desired state or a new

difficulty or comment on progress. This section presents a
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model, developed by Sidner and Israel, in which recognizing the

speaker's intended meaning plays a fundamental part in[ determining a response. First we describe our methodological and

theoretical approaches to this problem, and then we describe a

Smodel that enables us to tell what the speaker's intentions are.

We then illustrate the model on two examples and compare it to

our previous work.

We think the model that we present here is particularly

powerful because of the capabilities it provides to a system that

understands natural language and presents information on a

graphics display. It provides a system that can reason about

utterances that express errors in planning, acknowledge those

errors and respond to them just as people do in conversation.

5.1.2 Background for a new model

As part of our research to provide a sophisticated natural

language, graphics oriented system (NLGO) for a decision maker,

we collected protocols of users communicating with a simulated

version of the system. The simulated system was actually a

person communicating in English over a terminal and computer link

to a user. For graphics we used an overhead viewgraph projector

to project the drawings that the person simulating the machine

drew. Using an arrangement reported in [621, the user was able

to point at the display and make changes as needed. The

protocols consisted of the transcript of communications, all the

pictures drawn during a session, and notes indicating deictic
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33

references to screen objects . When we analyzed those

collections of protocols, we recognized that a NLGO system would

require the ability to understand the following types of

declaratives: ones that describe a desire, state a problem or

function as a comment on progress. To include this ability

within our on-going research, we found that we would need to

expand the existing pragmatics component (see [13) in two ways:

(1) by recognizing a richer form of plans, and (2) by making

explicit the connection between the speaker's intentions as

structured by his plans and the response intended by the speaker.

5.1.3 Defining Intended Speaker Meaning

Our goal is to provide a computational model of the hearer's

interpretation of the speaker's intended meaning. The intnde

m~.aingof an utterance we define as that set of <propositional

attitude (e.g., belief, want, intciid), propositional content>

pairs that the speaker wants to induce in the hearer by means of

the utterance.

The notion of the intended meaning of an utterance can be

illustrated by contrasting it with that of semantic meaning. The

semantic meaning of a declarative utterance is the propositional

33
A deictic reference is one where a person uses a linguistic

phrase to refer to something by pointing at it. The person may
actually point his finger, cock his head or otherwise physically
point or he may simply use a phrase that makes clear he's
pointing.
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content assigned to that type of utterance by the semantic rules

of the language. For instance, if someone says, "You're a

prince," the semantic meaning is that the person addressed by the

speaker is the son of a king. By contrast, the intended meaning

depends on the psychological state of the speaker at the time and

place of utterance. The speaker may mean that he thinks the

hearer is a really nice guy and wants to tell him so, or he may

be saying something quite different. The speaker, using irony,

may mean that the addressee is just the opposite of a nice guy.

This example demonstrates that the speaker's intended

meaning, though correlated, is not in general identical, with

semantic meaning. Comprehending the semantic meaning of the

utterance forms the basis for discerning the intended meaning,

but understanding the intended meaning also requires the use of

the following beliefs by the hearer:

1. The characteristics of the current situation

2. The speaker's beliefs and goals

3. The context of discussion (the dicou~irse cnteLxt) as a
special aspect of (1)

4. The conventions for action that exist between the
34

speaker and hearer

5. The mutual beliefs of the speaker and hearer concerning
(1) through (4).

34
This, of course, is relevant only to a special class of

situations; a class that includes the kind of interaction the BBN
system must handle.13
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A sample exchange will indicate the role of these kinds of

beliefs. In the example below, the user is interacting with our

NLGO system to display some information. The user's first two

utterances are simple, direct imperatives that indicate that the

user wants the NLGO system to display a part of the net and then

move the focus to a subpart of the display.

Dl-l U: Display the clause level network.
2 S: <display of network> OK.
3 U: Now focus on the preverbal constituents.
4 S: <display of subnet> OK.
5 U: No, I want to see S/AUX.

What does the user mean by her third utterance (utterance 5)?

The answer depends on what she believes about the net objects to

which she has referred. Suppose she thinks that S/AUX is part of

the preverbal constituents. Then she is communicating that the

display is wrong and what's wrong with it; she intends for S/AUX

to be included in the display with the other constituents.

Suppose, alternatively, that she thinks that S/AUX is not part of

the preverbal constituents. She is still indicating that she
35

wants to see S/AUX, but also that she has changed her mind

about the display in some way and intends S/AUX to be visible.

This discourse, similar to one discussed in [13], could be

handled by our first prototype only as a modification of

utterance (3) by utterance (5). Reasoning about the user's

overall task and the relation of S/AUX to it was not considered.

35
Either she has realized an error in her plans, or that the

error is due to a mismatch between her views about S/AUX and the
system's.
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In choosing among its available responses, the NLGO system

must use its model of the user's beliefs about the domain and its

model of what the user takes to be mutually believed between the

two of them about that domain. For example, the user might have

thought that S/AUX was one of the preverbal constituents, and

thought the NLGO system believed this also. She would then have

expected and intended the NLGO system to include that state in

the display. If the user had been right about this belief, the

NLGO system would indeed have included it. But the user's "No"

indicates to the NLGO system some bug in her plan, a bug stemming

* either from a faulty model of the domain itself or from faulty

* expectations about the NLGO system's model. [For simplicity, we

assume that the NLGO system is omniscient about the ATN grammar.]

If, on the other hand, the NLGO system doesn't conclude that

the user takes S/AUX to be among the preverbal constituents, and

if it believes that she takes JIbLat idea to be mutually believed,

then it must again use its models of her and of her model of

itself to determine what action "~ intended by the user [E.g.,

should it compress the current display to make room for S/AUX;

should it erase the current display and bring up a new one,

centered on S/AUX, etc.?]. This decision may depend on the kinds

of conventions alluded to in (4) above. In general, of course,

people's behavior in conversational situations also depends on

the relative status of the conversational partners, on what the

participants think will benefit themselves, as well as not harm

others, and the like. These social considerations are( 136
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significant to human interaction, but for the remainder of this

I paper, we'll assume that the NLGO system responds in a slavishly

g cooperative way, that is, it has no interest beyond serving the

user.

There are two ways to view the intentions of another agent.

The first is simply in terms of one's beliefs about what the

other person wants and believes. This is keyhole recognition

(see [23]). one person decides what he thinks another intends

simply by observing him through a keyhole; for example, I decide

I that you are looking for your umbrella, on the basis of your

I looking around the room with your coat on, wher. I believe you

believe that it's raining outside). Keyhole recognition of a

user's wants is central to Genesereth's MACSYMA advisor 1261; it

also forms the basis of plan recognition in both [56] 's work on

BELIEVER system and in Wilensky's story understanding [70].

I The intended recognition of what someone is doing, on the

other hand, is relevant for communicative situations [30], [1].

A speaker says something to a hearer and intends the hearer to

recognize the intention that lies behind the utterance. The

speaker is attempting to "give the hearer a piece of its mind"

I and it's essential to the success of the speaker's attempt that

the hearer recognize it as such. In Allen's terms, the shared

recognition of intention is expressed by the speaker saying

I something to the hearer because the speaker wants the hearer to

believe the speaker wants something. That is, H believes S wants( 137
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H to think (kelieve) that S wants something (HBSWHBSW). In the

example Dl above, shared recognition is involved in the fact that

the user wants the NLGO system to believe her statement, a

statement about the user's wants. Generally the hearer, in her

task of responding to the speaker, must take into account not

only the shared recognition of the speaker's intentions but also

the beliefs that the speaker assumes are shared with the hearer

(in Cohen's model [20] these are beliefs in the context

HBSWHBSW). Occasionally the hearer's own beliefs about a

situation will differ from the shared beliefs (called mutual

beliefs hereafter) and influence the hearer's response. Just how

this occurs will be illustrated later.

5.1.4 A model of recognition of intended meaning

The hearer's task in recognizing what the speaker meant by

an utterance is to be understood as follows:

1. to produce an explanation for the utterance, stated in
terms of the speaker's beliefs and wants

2. to use the explanation as a basis for a response.

We use the term "explanation" because the hearer is trying to

answer the question "Why did the speaker say that to me?" The

answer to this question - the proffered explanation of the

speaker's act in uttering what he or she did - in turn produces

new beliefs about the speaker; these will form part of the basis

of the hearer's response.
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I
The explanation, in general, will have the form of a set of

I pairs of propositional attitudes and propositional contents

I attributed by the hearer to the speaker. [E.g., <belief, that

S/AUX is part of the preverbal constituents> <want, that I

display all components of the preverbal constituents>, etc.]

Certain beliefs play a central role in explaining why the speaker

I said what he did:

1. Beliefs about the speaker's goal and the plan to
achieve it

2. Beliefs about the hearer's capacities

3. Beliefs about the hearer's dispositions to act given
information about the speaker's wants.

The problem we pose for ourselves is determining how to infer

beliefs of these kinds and how to use them to distinguish between

intended and helpful but unintended responses. We want our NLGO

system to recognize and produce the intended response whenever

possible, and to be able to produce a helpful response when

appropriate.

To model the construction of the required explant,tion, we

begin with Grice's theory of speaker meaning ( [30] and [311).

Grice notes that there are certain kinds of evidence normally

available to an audience on the basis of which the audience is

intended to draw certain conclusions about the speaker's intended

meaning. These kinds of evidence include (1) the features of the
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utterance, and (2) mappings between those features and

propositional attitude-propositional content pairs that the

audience (assumed to be a competent speaker/hearer of the

language) is supposed to be able to grasp, and il int.end.ed I&~

grasp. For example, the feature: DECLARATIVE will be mapped to

the speaker's wanting the hearer to believe the speaker believes

the propositional content of the utterance; while imperatives

will be mapped to the speaker's wanting the hearer to believe the

speaker wants the hearer to bring about the state of affairs

expressed by the propositional component of the utterance.

Somewhat more formally: an audience, for the utterance of a

certain sentence S1, who is believed by the speaker to have

certain attributes A, is expected to be able to recognize certain

features of the utterance and to be able to draw from those

features certain conclusions about what the speaker intended in

uttering S1 in that context. [One such audience attribute, of

course, is competence in the language of S1; others are both more

interesting and more specific to the situation.] These

conclusions include:

1. S1 has certain features (call them Fl ... Fn).I

2. Sl is correlated, in virtue of such features and the

rules of Lhe language, with the pair (p , PC(Sl)).

3. The speaker intends the audience to believe that the
speaker p's that PC(Sl).

4. By sincerity (see below), the speaker does p that
PC(Sl),
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I
36

5. the speaker intended that the hearer p that PC(Sl).

[In the above, "p" is a schematic letter that takes verbs of

propositional attitude as substituends; "PC", a schematic letter

that takes declarative sentences as substituends.] We can apply

this theory directly to the sample dialogues. For example, let

us consider a sample utterance from the dialogue DI, understood,

however, as the initial utterance of a discourse:

Si: I want to see S/AUX.

Tntuitively, we would like the theory to allow us to show how an

audience (even a computer system) would conclude that the user

wants to see S/AUX, and that the user wants it to believe that

he/she has this desire.

The set of relevant features F, attributes A and mappings C

include:

o F1 = S1 is in declarative mood

o F2 = S1 was uttered intentionally by U

o F3 = S1 was intentionally directed at S

o Al = S is a computer system with a graphics display, and
U knows this

o A2 = S believes U is sincere

36
Actually the hearer may be intended to have a different

propositional attitude p' toward a related proposition,. For
simplicity, we'll assume these are the same.
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o Cl = Fl maps to U's wanting the intended audience to
believe that U believes that U wants to see S/AUX.

Our proposed system will make default assumptions guaranteeing

F2, F3, Al, and A2, recognize that Fl, and apply Cl to SI. The

NLGO system can then use the intended conclusions and infer

directly that:

1. U intended (S to recognize) that S1 is correlated with
U's wanting S to believe that U believes that U wants
to see S/AUX (derived from intended conclusion 3 and
Cl).

2. By sincerity: U believes that U wants to see S/AUX.
37

3. By reliability: U wants to see S/AUX. ).

This, of course, is what, on intuitive grounds, we wanted the

NLGO system to conclude.

5.1.5 Extending the model

While the Gricean framework provides a starting point for

recognizing the speaker's communicative intentions, it does not

provide a recipe for inferring the intended response. Given, for

example, that the user wants the NLGO system to believe that the

user wants to see S/AUX, and nothing more, the system could

37
Simply stated, these rules, for the case of belief, are:

Sincerity: If x wants y to believe that x believes that q, then x
believes that q. Reliabiity: If y believes that x believes that
q and that x is reliably informed about q, then y will believe
that q. The basis for these rules is the intuition that the
speaker is sincere about his beliefs, and that what he believes
he believes reliably, at least for certain subject matters, such
as his own present state of mind.
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simply say "Yes, I understand," (or "Let me add that to my data

base of beliefs about you") - a behavior the user probably did

not intend. At the same time, the NLGO system col decide to

provide a lot of information by showing the whole ATN network and

highlighting S/AUX. Such behavior might even be helpful; but it

is not, we can presume, the intended response.

To determine the response the user intended, the NLGO system

must consider the utterance in a larger situational context.

This context is determined by what (it thinks) the user is doing,

what (it thinks) the user thinks the NLGO system can do, and how

cooperative (it thinks) the user takes the NLGO system to be. We
now turn to a description of a method for inferring the intended

response from the initial intended conclusions about the user's

beliefs and desires.

We have augmented the Gricean framework to enable the NLGO

system to derive a situation-specific explanation for the user's

having the wants and beliefs he or she is believed to have. In

particular, the system can be viewed as asking itself for an

explanation of some of the beliefs it attributes to the user.

The explanation is of the same type as that given earlier. For

example, to explain why the user wants the system to perform some

action, the system would infer that the user is pursuing a plan

in which that action is a step. [This process must stop

somewhere; in fact it stops because some plans are simply assumed
to be entered into for their own sake and to require no further

explanation.] 
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An example will illustrate what we have in mind. For

utterance Si above and the conclusions about the user's wants

regarding S/AUX given previously, the NLGO system seeks to

explain why the user wants the NLGO system to believe that the

user wants to see S/AUX, and perhaps why the user wants to see

S/AUX. To answer the first question, the system determines if

any of the plans it has provisionally attributed to the user

contains this step; and if so, it determines what relevant

capacities the user believes it to have. For the case at hand,

since there are many such plans (deleting S/AUX, rearranging its

arcs, etc.) and since this is the initial interaction, no

detailed plan-information is deducible. The user is assumed to

believe, however, that the NLGO system has capacities relevant to

seeing S/AUX--e.g., displaying it on the screen. The system

concludes that the user intends this capacity to be used, and

since the system is cooperative, the system produces a display.

An explanation for the user's wanting to see S/AUX may not be

forthcoming. (It may also not be needed for the system's response

planning.)

This extended theory depends not only on the Gricean

framework but also on the ability to create an explanation based

on the user's plans. This last involves:

1. Recognizing the correlations between utterance features
and pairs of propositional attitudes and propositional
content

2. Using the properties (P) of the NLGO system (described
above in Grice's theory)
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I
3. Determining the goals of the user from the

propositional attitudes, where the goals are structured
in a hierarchy of goals and subgoals

4. Deciding on the capacities of the NLGO system (mutually
believed to be capacities) that are relevant to the
speaker's goals

1 5. Using the speaker's recognized goals as an expectation

model for the remaining part of the discourse.

I To implement this model, we are using a number of available

AI tools (the implementation is not complete). The NLGO system

must have definitions of a number of plans, so we are using

ISacerdoti-based procedural networks of plans [55]. Beliefs and

wants must also be represented, and for this we are relying on

i Allen's and Cohen's models of belief and want contexts. A

crucial aspect of this model is a method of "parsing" the user's

wants as steps in plans; we are currently studying algorithms

I using an ATN formalism, but modified to allow for bugs in a plan,

recognizable with a small bug library (see [65]). This model

1 bears some similarity to Genesereth's plan recognizer [26]; it is

distinguished by recognizing a different class of bugs than

Genesereth's. This method makes it possible to use a plan, once

selected from the collection oi plans by unique substeps, as an

expectation device for the remaining part of a discourse.

I Finally, we use standard antecedent reasoning for deducing the

correlations between utterance features and propositional

attitudes, and for relating user plans and the NLGO system's

capacities.
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5.1.6 Reasoning about a user's "buggy" plans

In the previous discussion, we have shown the utility of

explanations reflecting (among other things) beliefs about the

speaker's goals and about his beliefs about the NLGO system's

capacities. Now we will demonstrate what additional reasoning

such a model enables. In particular, we will show that such

explanations provide a NLGO system with a means of discerning

bugs in a user's plan. We will show how declarative utterances

can be used to indicate bugs in the user's plan, problems that

are stated in terms of what the user wants or expects or in terms

of actual descriptions of difficulties in proceeding to the next

part of what the user plans to accomplish. The model of speaker

meaning presented so far makes it possible to interpret such

utterances.

In the first example, the user is unaware of a bug in his

plan. The NLGO system, after recognizing the bug, must inform

the user, because no satisfactory response is possible until the

bug is resolved. In the second example, the user discerns a bug

and informs the system; awareness of this bug allows the system

to recognize the intended meaning of a subsequent utterance. We

will present enough detail of each example to permit the reader

to see how a program could embody this reasoning process.

Let us return to example Dl given below.

Dl-l U: Display the clause level network.
2 S: <display of net> OK.
3 U: Now focus on the preverbal constituents.
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4 S: <display of subnet consisting of S/Q, S/HOW, S/,
S/QDET, S/NP, S/DCL.> OK.

5 U: No, I want to see S/AUX.

After the request to focus on the preverbal constituents, the

NLGO system recognizes that the user's plan involves examiningl 38
the preverbal constituents:

Examine User "preverbal constituents"
Cause User
(Display System "preverbal constituents")

See User "preverbal constituents"

The plan has two steps; the first is to cause the system to

perform a display, and the second is to look at the displayed

j items. [Plans typically have preconditions; steps may be

primitive, or may be composed of actions, requiring other plans

as well.1

SFollowing the last utterance of Dl, the system can infer

that by "no," the user is signifying that his plan has failed in

I some way. In interpreting the rest of the sentence, the system

will reason about the user's intentions [as shown previously] and

conclude that the user's intention is to see S/AUX. This

intention nearly matches step 2 of the plan deduced. It differs

because S/AUX is not a part of the preverbal constituents. Using

I a small bug library, the NLGO system will recognize a possible

bug in the Examine plan.

I 38
We assume here that the phrase "preverbal constituents" is

interpreted appropriately, but will not discuss thisj interpretation here.
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To account for the bug, the system can reason in either of
39

two ways .On the one hand, if it now has reason to believe

that the user believes that the preverbal constituents include

S/AUX, it will conclude that there is a bug in the user's plan.

This is a private (not mutual) belief; but it prevents the system

from responding in the way intended by the user (to display

S/AUX) for not enough of the user's intentions are clear to

decide how to do the display (e.g., to include S/AUX or to show

it alone). Hence the system will respond by indicating what the

bug is and by asking about the particular mode of display

desired.

On the other hand, if the system believes that the user

believes the preverbal constituents are (mutually believed to be)

disjoint from S/AUX, then the system will conclude that the user

has scrapped his current plan, and that this conclusion is one

the system is intended to deduce. In this case, displaying S/AUX

is the intended response, but the NLGO system must still ask how

to display it, since it is not clear whether the user intended it

to be displayed alone or with the subnet. A person, in such

circumstances, would probably conclude that S/AUX should be

displayed alone, because s/he could deduce that in general if a

plan is scrapped, effects of its partial realization are no

39
Actually there is a third case--the system was wrong about

what "preverbal constituents" refers to. As mentioned above, we
ignore this case.
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longer desired. However, this heuristic may be too general for

systems that still have limited reasoning capacities, and hence

we have chosen not to include such rules.

This example demonstrates two aspects of our NLGO system:

its use of plan-attributions, inferred in the course of

interpreting the user's intentions, to recognize bugs in plans,

and its use of private as well as mutual beliefs to determine its

response when what the user intends is unclear because of a

"buggy" plan.

The next example concerns the first part of the NLGO system

scenario where the NLGO system is interacting with a user when a

graphics display is available for representing information about

a database.

D2-1 U: I want to see the Generic Concept named
employee.

2 S: OK. (displays concept in mid-screen)
3 U: I can't fit a new Individual Concept below it.
4 Can you move it up?
5 S: Sure. (moves up the Generic Concept)

To respond to "Can you move it up?" the NLGO system must

determine whether the user meant his utterance directly as a

question about the system's abilities, or whether the user

intended to direct the system to move the concept under

discussion. Its decision depends on inferring the speaker's plan

and, in particular, on what it believes the user's model of its

own capacities to be.

This example illustrates a feature of natural interchanges:
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a user may have a plan in mind, and carry out a part of it,

without considering possible undesired side effects; when one

occurs, it may be recognized and eliminated. In D2 the user is

carrying out the plan of accessing the Concept for EMPLOYEE so

that she can add a new employee to the database. She wants the

system to display the EMPLOYEE Concept, but has not foreseen that

its display location might be inappropriate. After the

inappropriateness is discovered, the user indicates the

difficulty and expects it to be corrected. Just how the bug in

D2 is corrected depends on whether the user already believes that

the system can move things up and intends the system to do so, or

whether she has to find this out first.

From the NLGO system's point of view, the decision about

what the user means may cause it to respond differently in

various cases. Suppose the system thinks the user believes that

the system can move up concepts on the screen. Then when the

user indicates that his plan has a flaw (D2-3), the system must

conclude that the user's plan is blocked by the lack of space for

a new concept. When the question about moving the employee

concept is raised, the NLGO system will conclude that the user

intends to tell the system to perform the move by asking about a

precondition of the action she wants, a precondition that

consists in the system's having a capacity it is mutually

believed to possess. The system is intended to move up the

concept, not simply to answer the question.
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I
A different scenario is as follows. Suppose the NLGO system

thinks the user is unaware that the system is capable of moving

up the concept. Then, when the user indicates that his plan has

a flaw and asks about moving the employee concept, the system

will conclude that the user intends to find out whether it has

that ability, as part of finding a means of resolving the block.

In this case, if the system moves the concept, that is a bit of

helf behavior, one not intended to be recognized as intended

by the user.

We will outline in some detail how our NLGO system reasons

in such contexts by showing what plans are deduced, what rules

are needed, and how the reasoning proceeds in the case of D2-3

and D2-4. The relevant user plan is:

Add-Data <User> <netpiece> <data> <screen-location>
Consider-aspect <User> <netpiece>
Put User <data> at <screen-location>

The Add-Data plan states that to add data, a user must

consider some aspect of a network part (netpiece) and then put

some data at a screen location. Even after recognizing that the

user wants some data displayed from D2-1, the system cannot

deduce that add-data is the user's plan. Since there are many

ways to consider some aspect of a net (ask for a display, think

about it, ask to be informed about its contents), as well as many

other plans for which displaying a netpiece is a first step, the

user cannot be understood to have intended the system to

recognize that his plan was to Add-Data . All the system can
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conclude is that the user wants the employee concept displayed,

and it r ponds accordingly.

In reasoning about D2-3, RI can't fit a new Individual

Concept below it," the NLGO system concludes that among the

speaker's intentions mutually presumed to be recognized is that

the user produced a declarative utterance with the propositional

content that the user cannot fit a new Individual Concept

(abbreviated e2) below the Generic Concept (abbreviated el):

BELIEFi (Say User System (Declarative
(Not (Can User (Fit User e2 (below el))))))

From this, the system concludes that the user wants the system to

believe that the user believes that it can't fit e2 below el, and

that the user in fact believes that he can't. The system then

infers the embedded proposition [(Not (Can ... ))], and that the

user intended that that proposition be mutually believed. Using

a (default) rule to the effect that whenever a user says that it

can't bring about a certain state of affairs or perform a certain

action, the user is telling the system that it wants that state

of affairs brought about, the system concludes that it is

intended to believe that the user wants it to believe

WANTl:(Fit User e2 (below el)).

The system seeks a partial explanation of this intention. It

decides that the previous request for a display of the generic

concept, together with the inferred intention to fit, are good

evidence for the add-data plan as the intended plan.
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Now the system can bring to bear a rule tc the effect that

if it believes that the user has informed it ti.at he or she can't

perform a certain action which he or she wants to perform as part

of some plan he or she is pursuing, then it should conclude that

the user intends that that action should be unblocked. Whether4I

and how the system is expected to respond depends upon whether

the system believes that the user believes there is some action

available to the system relevant to this unblocking. In fact,

the NLGO system might have several relevant capacities (such as

moving up screen objects or erasing the screen as alternative

ways to make room). Where the system believes the user knows

this and hence concludes that the user wants to exploit some

system capacity, it must await f;.gther information to determine

which action was meant. In any case, on the basis of attributing

the unblock plan, it can interpret the user's question as a way

of bringing about a move-up action rather than simply a desire

for information. Even if no such request as "Can you move it

up?" were to follow, the NLGO system would have a basis for

asking about the user's intent ("Do you want me to move up the

concept or empty the screen?").

If the NLGO system believed that the user was unaware of its

capacities to move screen objects up, it would reason no further

on D2-3 (again, because it has not recognized any intention on

the part of the speaker that it act). D2-4 allows the system to

deduce that the user wants to know if it can move el up, since

yes-no questions are taken as signalling intentions to know if.
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The system, in seeking an explanation, can conclude that this is

the first step in finding an agent with a certain capacity, and

that this action is a means of unblocking the step of putting

objects on the screen. The system must respond to the user's

intention by telling the user it can move up the display, but the
40

choice actually to move is made as helpful behavior because no

intention that the system move anything up has been recognized.

In both of the above cases, the plan to Add-Data to the

screen is known to be in effect. Hence once the bug is cleared

away, the NLGO system is prepared to interpret subsequent

utterances in light of this plan. Since the user's subsequent

utterance in the proposed scenario requests that an Individual

Concept with a Role first -ame "Sam" and last name "Jones" be put

on the screen, the system would recognize this request as part of

Add-Data and determine the intended location for the IC on the

screen--below the Generic Concept for EMPLOYEE. In this way, the

plan becomes an expectation device for the next portion of the

conversation.

This example illustrates not only that mutual beliefs about

the NLGO system's capacities affect the system's determination of

the user's intentions, but also that the full explanation of each

40
based on rules about helping out when one has an appropriate

capacity. As with other heuristics, it may be wise to monitor
carefully what the system does to be helpful, since some helpful
actions, if not in fact desired by the speaker can be easily

undone, but others have serious side-effects.it 154
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utterance deepens the system's understanding of the user's goals

and subsequent utterances.

5.1.7 Comparison with an earlier approachI In this section, we present one short example of how Allen's

algorithms, which form the basis of our previous work on speaker

meaning, proceed on utterances from the domain of information

about trains in [1]. we will show how our proposed model would

proceed and discuss the differences in the two approaches. As we

will illustrate, a crucial difference is using the knowledge of

what the speaker is doing (that is, his plan) and knowledge of

the hearer's (that is, the system's) capacities to determine a

response. Allen's model relies largely on invoking general rules

true for any action; while our model uses some general rules

about actions, it also brings to bear its knowledge of particular

actions the speaker is executing and its knowledge of its own

beliefs as a hearer about its capacities. Because the model

brings these kinds of knowledge to bear, it explicitly connects

the speaker's intentions, expressed as plans with the response

intended by the speaker.

Figure 13 illustrates the processing of Allen's model for

the utterance, "Can you tell me if there is a bus to

E. Watertown?" Notice that the algorithm assumes that this

41
question maps to an s.request by actor A to hearer H of an

41j for definitions of s.request and inforniif, see [1].
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informif by H to A of whether H can do an informif of the

existence of a bus to E. Watertown. The reader should observe

that two speech acts, both requests, are identified during the

processing (they are underlined in the figure). The model, after

deducing all the propositions (called the plan), uses them to

determine obstacles in this plan, obstacles it should overcome.

One obstacle it might recognize is: (A Knowif (3 bus to

E. Watertown)). This obstacle can be overcome by an informif.

FIG. 13. SAMPLE PROCESSING FOR ALLEN'S MODEL.

Can you tell me if there is a bus to E. Watertown?
(S.Request A H (Informatif H A (Cando H

(Informif H A (a bus to EW)))

Ii I I body (body-action)
VI I

(Requst Ai a.Ilnfrmif 11 A
Cando H(nrmif ))))II

I effect
V

(HBAW (Informif H A (Cando H (Informif...))))

II deduce-action(effect)
V

(HBAW (Knowif a (Cando H (Informif...)))

I deduce(know-prop+)
V

(HBAW (Cando H (Informif H A...)))

i deduce(precondition-action (Informif))
V

(HBAW (Informif H A (9 bus to EW)))

iI body (body-action)
V

(Rgequet A (Infr.rmif HA _L ku= ta LW))

i effect
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V
(HW (Informif H A (3 bus to EW)))

II enable (want action)
V

(Informif H A (2 bus to EW))

II effect (action-effect)
V

(A Knowif (3 bus to EW))

II deduce (know-prop+)V
(3 bus to EW)

I1 body(body-action)

(Determine A modes of transportation)

By comparison, our model will reason as follows. For the

question "Can you tell me if there's a bus to E. Watertown?" H

will ask itself why A said that to H and will conclude on the

basis of "can you" questions that:

WantO: A wants to know if I (H) can tell him (A) if
there's a bus to E. Watertown.

Such a want causes the system to ask itself for an explanation of

that want. To do so, H uses a rule that states that if someone

wants to know something and asks a question to a person who is

believed able to answer that type of question, then an answer is

wanted, i.e.,

Wantl: A wants H to tell A if H can tell A if there's
a bus to E. Watertown?

Now H asks why does A want this? H turns his attention to what A

is doing and deduces A is a stranger in a train station. Such
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people, H reasons, are usually interested in modes of

transportation, such as trains and buses, and for getting to

places. To find a means of travel one can look at a travel book

or ask a person who has knowledge such matters. If one chooses

to ask a person, then one must identify a person with such

knowledge. H believes that he is one such person and WO

indicates that A has decided to find out that H is. Hence H is

able to conclude that A needs information about modes of travel,

rather than just information about H's capacities. Then, by

looking at the internal structure of Wantl, H can determine just

which modes of travel A wants to know about, and conclude that A

has Want2:

Want2: A wants me to tell him if there is a bus to EW.

Before going further with H's reasoning, it is important to

see that the particular situation of the speaker and hearer are

significant to the deductions the hearer can make. The inference

to Want2 depends on the fact that both speaker and hearer know

that A is a stranger in a train station and that as such a person

wants to know about transportation modes. Furthermore, the

capacities of the hearer, which are mutually known to hearer and

speaker, help the hearer explain what the speaker says. Hence H

is not merely good at guessing what A wants, but rather A intends

that H conclude WantO, Wantl, and Want2.

Just as with WantO and Wantl, H must ask himself why A wants

Want2. Here the answer brings to an end any further
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explanations. A w-nts information about buses (call that Want3)

but H cannot draw any further conclusions (such as answer to why

A wants Want3) because such conclusions would involve guessing

about A's wants and desires. There is no reason to believe that

such guessing is intended by A, so H suspends reasoning further

about A's wants.

Now that H has established several of A's wants, we can ask,

what does H do with his explanation? Two of A's wants (Wantl and

Want2) involve H as the agent of an action wanted. H brings to

bear knowledge about what A knows of H's capacities to determine

that A intends for H to act on these. For the other wants, WantO

and Want3, H may act, as a helpful person, in some way H believes

appropriate, but his actions are not intended by the

communication. In carrying out Wantl and Want2, H must reason

that if he performs the telling of Want2, he will also perform

the one for Wantl, so that only one action is necessary.

The major difference in- these two models is use of the

speaker's plan. Allen, who takes all the conclusions inferred in

his model to be part of the plan, does use the speaker's overall

goal in reaching those conclusions. Instead, that goal is the

last conclusion reached in his model. By contrast, in our model

the speaker's overall goal (to determine a mode of transportation

and find someone who knows about it) is used early in the

processing, in addition to rules about the reasons for actions.

The two approaches also differ on what the hearer takes the
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intended response to be. For Allen's work, the response is the

overcoming of obstacles that another component of his model can

identify. Overcoming these obstacles is taken to be the intended

act because in general the speaker wants the hearer to be as

helpful as possible. In our model, helpful behavior is

distinguished from more directly intended responses such as

Want2. These responses must be explicitly related to the

speaker's intentions, viewed as a plan. In addition, our model

takes into account specific capacities of the hearer in

determining an intended response.

A final distinction between the two models concerns the

utterance and initial conclusions drawn from it. Allen assumes

that utterances can be mapped into surface speech act forms (such

as s.request) for his model. On the other hand, we have chosen

rules that map from the utterance to the NLGO system's first

conclusion by conventions about how English is used. The type of

conclusion drawn is not one that identifies an act that A wants H

to perform, but rather states some want that A has about his own

concerns.

One difference between the two approaches cannot be easily

illustrated in the domain of information about trains. We have

expanded on the notion of plans originally given in Allen's work

to include multistep and interrupted plans. Allen's model cannot

recognize these kinds of plans because the model's plan language

is not equipped with a means of describing them.
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iIn summary, we have presented in this section a model of the

interpretation of speaker meaning which takes into account

several different kinds of belief: about the current situation of

the speaker, bout the speaker's goals, about the discourse

context, about the speaker's knowledge of the hearer's

capacities, and about the hearer's conventions for acting. Our

model, both in the abstract and in its computational form, infers

an intended response on the basis of these beliefs by producing

an explanation for each of these beliefs and using that

explanation for further conclusions about speaker intentions.

This model makes possible the recognition of the speaker's

intended meaning not only of imperative and interrogative

utterances but also of declaratives that serve as comments,

complaints, checks on progress, and announcements of bugs in the

speaker's attempts to achieve his goal.

5.2 Utterance Planning

by P. R. Cohen

5.2.1 Deciding what to say

Current natural language systems have great difficulty in

producing appropriate responses. The difficulty stems not so

much from an inability to generate sentences as from an inability

to decide what to say. Given a delimited propositional content,

algorithms can be developed to produce isolated natural language

utterances that express that content. However, there are as yet
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no algorithms for determining just what facts and properties

should be expressed in a given context.

The problem of deciding what to say manifests itself in many
ways, for example:

1. Deciding what communicative act to perform -- a
request, question, informative statement, suggestion,
etc.

2. Deciding what the content of that act should be -- what
is to be requested, questioned, suggested, etc.

3. Deciding how to refer to entities -- should a definite
or indefinite noun phrase or a pronoun be used? If a
noun phrase is to be employed, which descriptors should
be expressed?

4. Deciding on overall utterance form -- Should the
utterance be a complete sentence or a fragment (noun
phrase, prepositional phrase)? if it's to be a
sentence, should it be a declarative, interrogative, or
imperative? (Note that this decision is not identical
to, but is related to, deciding on the communicative
act to be performed). What should remain in focus or
be introduced into focus?

We have been investigating, with the work of Cohen, the role

of reference planning in task-oriented dialogues in order to

answer some of these questions (see [211).

As an illustration of the need for explicit reasoning about

referring phrases, consider that the answer to a simple question

("Where does John live?") should depend upon the respondent's

knowledge of the questioner's beliefs and plans. If the

respondent believes the questioner plans to drive to John's

house, it might produce a route description, or supply

information necessary for the questioner to identify John's
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house. If, however, it believes the questioner intends to send

John a letter, it should supply a street address and zip code.

If the questioner is believed to be taking a survey of the

geographic distribution of a set of conference participants, an

appropriate answer might include a state name (California) but

not a country (since the questioner is believed to know the

country already). Thus, a response planning component must be

sensitive to the beliefs and (especially) the plans of the user.

5.2.2 The Act IDENTIFY

Searle [59] has claimed that the communicative act of

(singular definite) reference involves uttering an expression D

with the intention that the hearer pick out, or idntify the

referent of D. From the perspective of a plan-based theory,

choosing a phrase that enables a hearer to identify a referent

should be represented as an action in the speaker's plan. As

such, it can be reasoned about just like any other act.

Identification is essentially a search process, the act of

searching for something that satisfies the description. We can

approximate its definition with the following:
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IDENTIFY(agt, D, x)
(where agt is the agent, D is a description)

precondition: There is an object x perceptually

accessible to agt such that x is the referent of D.

effect: (IDENTIFIED-REF agt D)

means: Some function mapping the description D to some
procedure that when executed yields a (perhaps) "direct
representation" of the referent of D. That procedure
may well incorporate the results of perceiving the world.

What is not clear, of course, is just what agt has to know
42

about D to say he has identified it. To give a name to the

state of knowledge one is in after having identified the referent

of D, we will use (IDENTIFIED-REF agt D). We shall only consider

the "basic" case of identification through perception.

C. The probem areas

There are (at least) six problem areas that need to be

addressed.

1. Is there evidence for an IDENTIFY act in speakers' and

hearers' plans?

2. If so, why is it planned?

3. What advantages accrue from positing such actions? Do
they allow us to develop a uniform analysis for what
would otherwise be unrelated phenomena?

4. What signals or communicates a speaker's intention that
a hearer identify the referent of a description?

42
Use of a standard name or rigid designator in the possible

worlds framework implies agt is so "acquainted" with the referent
of D that he could not possibly misidentify it. That, however,
is too strong a condition. Ultimately, one would like to make
identification relative to a "purpose".
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5. When do speakers explicitly communicate the intention

l that their hearer identify a referent?

6. How is IDENTIFY defined as an act? In what situations
* is it appropriate? What changes of "staten does it

produce? By what means is it accomplished?

I* We have been investigating problems 1, 3, and 5 by exploring

evidence from task oriented dialogues.

5.2.3 Work on reference planning

We have explored the relationship between planning and

reference empirically and formally. Regarding the former, we

have conducted a study [21] investigating referring acts and the

Ieffects of modes of communication (e.g., telephone vs teletype)

I on the structure of instruction-giving discourse (similar to the

studies of Chapanis and his associates at Johns Hopkins [431.)

Our plan-based formalism [22] [45] that speakers would

explicitly request hearers to identify the referents of their

descriptions as separate steps in the dialogue. In fact,

speakers frequently uttered noun phrases, alone, with questioning

intonation, or as seemingly informative utterances, intending the

hearer both to identify the referent of that phrase and to report

on his success, as in the following fragment:

1 A: ONow, the red piece we talked about before?*
or

l A: "There's a little red piece."
B: "Yeah."
A: "Put it in the hole on the side of that tube."
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This use of language differs from the more straightforward

phrasing, "Put the red piece that we talked about before in the

hole on the side of that tube." We found a great difference in

the use of reference strategies between telephone and teletype

modes. In telephone mode, 33% of the speech acts performed, the

highest percentage of any category, were requests for referent

identification, compared with 10% in teletype mode. In teletype

mode, requests for action were the primary means for getting the

hearer to identify referents and formed the largest category

(34%).

Our second line of work [46] on the problem of choosing a

referring expression has been to state formal constraints on the

act of referring (uttering a description with the plan that the

hearer identify its referent). A condition was proposed that

does not require either speaker or hearer actually to believe

that the description chosen is true of its intended referent.

This condition is particularly important when the system has an

external link to a changing world and therefore has information

that the user does not have. Under such circumstances, if system

and user refer to some object 0 with some description D, and the

world changes so that the system believes D no longer truly

designates 0, the system may still use D to refer to 0 without

necessarily having to report the change.
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5.2.4 The goal structure of task-oriented dialogues

The following goal structure is appropriate to all modes of

our dialogues: In each such dialogue, we assume an expert and an

apprentice. For each assembly goal-state (for example (CONNECT

MAIN-TUBE AIR-CHAMBER), the expert has the following goals:

1. Select an action achieving that goal state.

2. Get the apprentice to perform that action.

3. Ensure success of the action.

Since we assume that the experts are creating and executing

plans, goals derived from Goal (2) lead to the expert's planning

and executing requests for assembly actions. In face-to-face

mode, the experts achieve Goal (3) perceptually. For telephone

and teletype dialogues, apprentices inform the expert when

actions are completed. Occasionally, when the apprentice is

taking longer than expected (or in face-to-face dialogues, when

the apprentice's body is blocking the expert's view) experts

question whether the requested action has been completed. These

speech acts--requesting actions, reporting that actions were

completed, and questioning the completion of actions--will be

seen to pertain as well to the identification of referents.

Before showing that the overall structuring of these two types of

acts is the same, we will discuss the many ways requests are made

1~ and show that those same ways arise for identification.
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5.2.5 Requests to identify

Below are various examples of requests occurring in our

dialogues and a set of parallel examples of what we will call

requesting identification. Requests for action will be

abbreviated by "R(ACT)," and requests for identification will be

labeled "R(ID)." The mode of communication is indicated in

parentheses.

Direct Rget

o "Fit the blue cap over the tube end." R(ACT) (Written)

o "Notice the two side outlets on the chamber" R(ID)
(Written)

o "There's a long cylinder that has a slightly purplish
cast to it." R(ID) (Telephone)

o "- On the table is a small, simple red plug without a
hole." R(ID) (Written)

o "do you see small/ three small red pieces?" R(ID)
(Telephone)

o "Now you have two devices that that are clear plastic"
R(ID) (Telephone)

These utterances show that the goal of identification can be

achieved in a separate step. Because of the goal structure of

our task-oriented dialogues, the success of identification

requests should be questioned and reported just like requests for

other kinds of acts.
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5.2.6 Indirect requests to identify

In our transcripts, the problem of inferring the right

intention behind an utterance form occurs frequently with

identification. In the above examples, "there is . . ." is

4literally an informing act about the state of the world, as is

"On the table is and "Now, you have two " The same

utterances could appear in other circumstances and would not lead

a listener or reader to infer that the speaker intended an object

to be identified. For example, as part of the setting of a

mystery story, similar statements, whatever their function, are

obviously n= intended to get the readers to search their

perceptual world. Our task, as analysts, is to uncover the

conditions under which hearers are to make such inferences.

Perrault and Allen [451 show how, by assuming hearers are trying

to recognize speakers' plans, a speaker's ostensibly informing

the hearer that the precondition to some act is true can be seen

as requesting the hearer to perform that act, provided it is

shared knowledge that the speaker would want the primary effect

of that act.

Assuming that the precondition to IDENTIFY is that there

exists an object perceptually accessible to the hearer satisfying

the description, then, for utterances whose logical form is

EXISTS (X): D(X), Perrault and Allen's general method applies.

The method generates an IDENTIFY act as part of the hearer's

model of the speaker's plan, provided it is shared knowledge that
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the speaker has some reason to want the object to be identified

(for example, to enable the hearer to perform a physical action).

Thus, the plan--based inference that someone may want the

precondition for an act to hold because they want to do that act

generalizes to IDENTIFY.

Allen [1] suggests that properties that need to be inferred

to "fill in" fragments come from shared expectations. In our

domain, it is shared knowledge that the hearer will pick up

pieces that the expert describes (since both know it is a manual

assembly task). Given this expectation, the property in Allen's

scheme that must hold is that the hearer KNOWREF D (where KNOWREF

is defined as EXIST(X) [X = D] & H BELIEVE [X = DI), which is an

exceedingly strong way to say that the hearer has identified the

referent. Since this is the first reference to the piece in

question, it is shared knowledge that the hearer has not

previously identified the referent of D.

5.2.7 When are separate requests to identify used?

Major questions for computational models of language

production and comprehension become:

o How and why should a system plan separate requests for
identification rather than simply produce imperatives
requesting assembly actions?

o Under what conditions will systems be confronted with

such utterances?

Languagg Production: The answer to the first question is

suggested by the following fragment of a teletype dialogue:
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1. B: "anyway, put the red piece with the strangeJ projections LOOSELY into the bottom hole on the main
tube. Ok?"

2. A: "Which hole, the bottom one on the side?"M

3. B: "right, put the 1/4 inch long 'post' into the
loosely fitting hole...

4. A: I don't understand what you mean

5. B: the red piece, with the four tiny projections?

6. A: OX

7. B: just place it loosely [into the]

8. A: [done] [B & A typed simultaneously, causing
gibberish to appear on each screen]

9. B: yes?

10. A: yes

11. B: place it loosely into the hole on the side of the
large tube...

12. A: done

13. B: very good. See the clear elbow tube?

14. A: Yes

15. B: Place the large end over that same place.

16. A: ready

17. B: take the clear dome and attach it to the end of the
elbow joint...

18. A: using the blue attachment part?

19. B: right, it's already attached, so I didn't mention it
Now, put the red nozzle over the hole in the dome."

There are three strategies of instruction here. First,

direct requests for assembly actions, in the form of imperatives,

as in line (1). Second, there are conjoined direct requests,( 171
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such as to pick up followed by an assembly action, as in (17).

Finally, B performs separate requests to identify, each followed

by a request for an assembly action as in (5) through (7) and

(13) through (15).

It is important to notice here that B shifts his strategy

(in a fashion that resembles driving a three-speed car). Prior

to this fragment, the conversation had proceeded smoothly, in

"high gear," so to speak, with B initially "upshifting" from

first a "take and assemble" request to six consecutive assembly

requests (one of them indirect), the last of which is utterance 1

of this fragment.

In (2) through (4), we observe clarification dialogue about

a prior noun phrase. Immediately after an apparent breakdown at

(4), B "downshifts" to questioning the achievement of his first

subgoal, identifying the red piece. Once that is corrected, and

a channel contention problem is solved, B stays in "low gear,"

explicitly ensuring success of his reference (in (13)-(14))

before requesting an assembly action in (15). After that

success, he "upshifts" to "second gear" -- with requests to take

and assemble in (17). After being successful yet again, B

"upshifts" in (19) to "high gear," again using a direct assembly

request, and stays in "high" for the rest of the dialogue (six

more requests).

What could explain this conversation pattern? A

representation of the plan for assembling shows clearly that to
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install a piece, one must be holding it; to hold it, one must

pick it up; to perform any action on an object, one must have

identified that object. By requesting an assembly action ("high

gear"), one requires the listener to make the remaining

inferences. By requesting the sequence take-and-assemble

("second gear"), the speaker makes one of the inferences himself,

but requires the listener to realize that identification of the

speaker's past description is needed. Finally, "low gear"

involves the speaker's checking the success of the component

subgoals, which involves description identification.

In summary, the strategy shift to "low gear" occurs after a

referential miscommunication, because it affords a more precise
43

monitoring of the listener's achievement of goals. A task-

oriented dialogue system should have "dialogue sense" enough to

plan utterances tailored to the user's problem.

5.2.8 Conclusions

A number of conclusions for natural language processing can

be drawn from these results. Analyses of such utterances and

their evoked responses according to a plan-based theory of speech

acts indicate that, contrary to current approaches, referent

identification is an action that is reasoned about in speakers'

4The use of separate utterances for identification has also
been observed independently by Ochs, Schieffelin, and Pratt (421

for parent-child discourse.

3 173



Bolt Beranek and Newman Inc. Report No. 4785

and hearers' plans. Reference then becomes the act of describing

something with the intention and plan that the hearer identify

the referent.

In teletype mode, subjects primarily used separate requests

for referent identification after prior referential

miscommunication. This finding, coupled with the need to

represent referent identification as an action, indicates that

instruction-giving systems especially need to be able to plan

referential acts as separate steps when the user is having

difficulty in performing the task. To be effective, systems will

have to plan their referential acts to employ the means believed

to be available to the hearer for referent identification.

Finally, the difference in mode suggests that, as hearers,

speech understanding systems should be designed to process these

explicit requests for referent identification. Again, such

systems will need to reason about identifying the referent of the

user's descriptions as part of recognizing the user's plans.

5.3 A Revised Approach to One Anaphora

by B. L. Webber

5.3.1 Background

In this section, a discussion of new work on one-anaphora

illustrates a somewhat different and simpler approach than that

proposed in [683. Although this approach has not been integrated
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yet with the system, it appears very promising. At the

conclusion of the discussion, I will comment on what is involved

in its implementation.

4 One-anaphora, anaphoric use of the word "one" (or "ones"),

is a common phenomenon in natural English discourse. Anaphoric

"ones are those that take the place of (at least) the head noun

of a noun phrase. For example,

o one that I heard long ago

o the striped one you got from Harry

o three small ones.

Not all uses of "one" in English are anaphoric, of course: "e

can 'be used by itself as a formal, nonspecific third person

pronoun - e.g.,.

o One is cautioned against taunting the bears.

o One doesn't do that in polite company.

or as a numeral - e.g.,

o One true faith, two French hens,

o We arrived at one p.m.

Although in most cases it is easy to distinguish anaphoric from

formal or numeric "one" on surface syntactic grounds alone, it is

175



Bolt Beranek and Newman Inc. Report No. 4785

44
possible for syntactically ambiguous cases to occur in text -

e.g.,

o Since anyone can choose his favorite number, I want one.

o Although John has bought two cats, I want one.

In linguistics, one can point to at least two significantly

different approaches to one anaphora: the transformational

|* approach (which is concerned with syntax) and the text-level

approach (which is more concerned with semantics). Although the

approach that I will be presenting here differs from both of

these, they will be discussed briefly to provide a basis for

comparison.

In transformational grammar, one-anaphora has been discussed

purely syntactically, as an intra-sentence substitution

phenomenon. For example, Baker [21 presents such an account in

the context of deciding between two alternative structural

analyses of noun phrases - the so-called "NP-S analysis" and the

"Det-Nom analysis." The rewrite rules of these two analyses are

roughly as follows:

NP-Sq Det-Nom
NP --> NP S NP --> Det Nom
NP --> Det N Nom --> Nom S I Nom PP I Adj Nom

Nom -- > N

44
In speech, the ambiguity may not arise because anaphoric

"one" is unstressed, while the other two uses of "one" are
stressed.
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Baker argues for the "Det-Nom analysisu because it seems to

allow the simplest statement in terms of structural identity of

what "one" or none(s)" can substitute for. Hereafter, use of

"one" will always imply "ones" as well. The statement that Baker

arrives at is

X NOM Y ADJ NOM Z
the +count

NUMB ER
1 2 3 4 5 6

condition: 2 =5

1>, 2, 3,4, one ,6

NUMBER

where a NOM inherits its features (e.g., count, NUMBER, etc.)

from those of its head noun. Informally, the above

transformation states that a NOM constituent preceded by an

adjective or definite determiner, whose head is a count noun, can

be replaced by "one" or "ones" (depending on whether the NOM is

singular or plural in NUMBER) if an identical NON appears earlier

in the sentence. This transformation is meant to account for

examples like

D3-1 I prefer the striped tie you got from your aunt to
the paisley one.

j The problem with this structural-identity account is not only

that it is limited to individual sentences, but that it is not

even an adequate syntactic account at that level. Consider for

example the following:

D4-1 If Mary offered you a new Porsche and Sally offered
you a '68 Morgan, which one would you choose?
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Under no analysis does this sentence meet the structural

conditions of Baker's rule: rather, "which one" means roughly

"which member of the set consisting of the new Porsche Mary

offered you and the '68 Morgan Sally offered you." Baker's
45

approach has nothing to say about this.

In text linguistics, a particularly clear (albeit purely

informal) analysis of both definite pronoun and "one" anaphora is

presented in [32]. The primary concern of the authors', Halliday

and Hasan, is with the notion of "cohesion" - what makes a text

hold together, what makes it more than a random set of sentences.

According to the authors, both definite pronouns and "one" can

provide examples of types of cohesive relations: the former, the

relation of "reference," the latter, the relation of

"substitution." "Reference," as Halliday and Hasan use the term,

relates a text element like a definite pronoun and

...something else by reference to which it is
interpreted in the given instance. Reference is a
potentially cohesive relation because the thing that
serves as the source of the interpretation may itself be
an element of text. [321, pp.308-9

Except for their terminology, Halliday and Hasan's general

position on definite anaphora and its relation to the discourse

45
Baker poses an additional constraint on one-anaphora in [3] -

effectively, a "transderivational constraint" arbitrating between
optional, applicable transformational rules. However, this still
treats one-anaphora purely intra-sententially and still does not
address examples such as D4 above.
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is not very different from that presented in (681. That is, in

processing a text, a listener or reader is building a model of

the entities being discussed, their possibly changing properties,

and their relationships with each other. A definite anaphor

provides access - that is, it provides a handle on -- such a 0

discourse entity.* This view is similar to that underlying

Sidner's work on definite anaphora and focus 161].

"Substitution", on the other hand, is

a formal (lexicogrammatical) relation, in which a form
(word or words) is specified through the use of a
grammatical signal indicating that it is to be recovered
from what has gone before. The source of recovery is the
text, so that the relation of substitution is basically
an endophoric one. It is inherently cohesive, since it
is the preceding text that provides the relevant
environment in which the presupposed item is
located. [321, p. 308.

Therefore, unlike definite pronouns, "one* establishes 7ohesion

simply at the level of wording and syntactic structure. , except

for its attention to more than the single sentence and for its

greater concern with the function of mone" than with its formal

syntax, Halliday and Hasan's account of "one(s)" anaphora still

mirrors Baker's.

In [68], the approach to formalizing what a text makes

I available for one-anaphora was not too far from Halliday and

Hasan's. That work is based on the view that what "one' accessed

was a "description" that the speaker felt was available to the

listener. Such descriptions can be made available by the

1
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speaker's and hearer's shared spatio-temporal context, as in the

case of two people peering into a geology exhibit case, one

saying to the other,

j "Even larger ones were found in the Mare Cambrium."

However, speakers can usually expect that descriptions they have

uttered are more readily available to the listeners than this

example suggests. they don't always need a shared spatio-

temporal context. Hence, the most likely place to look for

descriptions accessible to one-anaphora is in the text.

It is now clear that a simpler account of one-anaphora is

possible. Anaphoric "one" can be viewed in much the same way as

definite plural anaphors like "they," "the rocks," etc. The

intuition is that "one" indicates to a listener selection from a

set. That is, the interpretation of anaphoric "one" should be

the same as the interpretation of "one of them". This reduces

the problem to the task of identifying the set-type discourse

entities (both specific and generic) that this implicit "them"
46

can access.

46
Evidence for this approach also comes from Baker [2]. His

rewrite rules - given above - require the "one" constituent to be
interpretable as having the feature "+count" - i.e., to be
capable of specifying a set. A mass term X, except when
interpreted as "types of X," does not specify a set. It is also
not open to one-anaphora, except in this "types of X" case - e.g.

I love red wine, especially ones that have been aged
properly.
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This way of treating one-anaphora may seem fairly obvious:

I however, its obviousness only follows from considering the sets a

text makes available for access and realizing that these sets-
both specific and generic - must also be naroundO to provide an

uaccount of definite anaphora. As for the evidence, consider

first some specific sets evoked by a text:

* D5-1 All the wines in Dave's cellar are drinkable.
2 He bought them 10 years ago.

they => the wines in Dave's cellar

D6-1 Sue gave each boy a green hat.

2She had bought them on sale.

them => the set of just mentioned green hats,

each of which Sue gave to some boy

D7-1 I see a BMW, a Porsche, and an Audi outside.
2 Do they belong to you?

they => [the just-mentioned BMW I see outside,
the just-mentioned Porsche I see outside,
the just-mentioned Audi I see outside}

(Curly brackets are used to specify a set by enumerating its

members within the brackets. The symbol "=>n indicates that the

V definite anaphor on the left accesses the same discourse entity

as the somewhat richer description on the right. The formation

of such descriptions is discussed in [681, with a more succinct

formulation given more recently in (691.) Each of these can be

the implicit set from which a one-anaphor selects.
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D8-1 All the wines in Dave's cellar are drinkable.
2 So bring me the ones he bought in Florence.

SELECT "ones" from: the wines in Dave's cellar

D9-1 Sue gave each boy a green hat.
2 Unfortunately the largest one was torn.

SELECT "one" from: the set of just-mentioned green
hats, each of which Sue gave to some boy

D10-1 I see a BMW, a Porsche and an Audi outside.
2 Is one yours?

SELECT "one" from:

{the just-mentioned BMW I see outside
the just-mentioned Porsche I see outside
the just-mentioned Audi I see outside)

Notice that there may be additional stipulations in the text

concerning which member or members of the anaphorically accessed

set are to be selected - e.g., "bought in Florence," "largest,"

etc. These constraints may be used as evidence by the

understanding system in figuring out what set is being accessed

anaphorically. Note that these noun phrases headed by anaphoric

"one" may themselves evoke new discourse entities corresponding

to the selected individual or the more restricted set. Next

consider some generic set-type entities evoked by a text. (These

are discussed in more detail in [69]). Basically, The term

"generic sets" is used for those sets characterizable as "the set

of things describable as an <x>," where <x> is anything that
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there could be sets of -e.g., elephants, types of beer, bottles

of wine, etc.; <x> need not be any sort of Onatural genus.' For

example, in Dll the definite pronoun Othem" is not meant to

I access just the particular set of wines in Dave's cellar now but

rather wines in general.)

D11-1 All the wines in Dave's cellar are drinkable.

2 He buys them only from the best merchants.

them => wines

D12-1 Sue gave each boy a green hat.
2 Usually she pays $8 apiece for them.

them => green hats

D13-1 I saw 7 Japanese station wagons today.
2 They must really be selling like hot cakes.

they => Japanese station wagons

Again, each of these generic sets can be the implicit set

from which a one-anaphor selects.

D14-1 All the wines in Dave's cellar are drinkable.
2 So we don't need to open the ones he bought
yesterday.

SELECT *ones" from: wines

D15-1 Sue gave each boy a green hat.
2 She gave Wendy one too.
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SELECT "one" from: green hats

D15-3 She gave Wendy a red one.

SELECT "one" from: hats

D16-1 I saw 7 Japanese station wagons on Walnut Street
and another one on Pine.

SELECT "one" from: Japanese station wagons

D16-2 They were all smaller than the French one Jean
bought.

SELECT "one" from: station wagons

Notice that just as there may be more than one generic set entity

derivable (via generalization) from a salient description, so may

there be more than one generic set entity from which a one-

anaphor may select.

To be sure, identifying what set-type discourse entities are

accessible to one-anaphora cannot be done solely by the sorts of

rules in [69]: subtle inferential processes seem able to make

set-type entities available to one-anaphora as well. For

example,

D17-1 I went to pick up Jan the other day.
2 You know, they live in that big house on Vine.

they => Jan's family
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D18-1 I went to pick up Jan the other day.I 47

2 ?? You know, the older 
one broke his ankle?

SELECT one from: Jan's family

However, as the example shows, such entities seem less available

to the implicit "of them" in a "one" anaphor. Why this is the

case is not clear. Intuitively, one could say that it was easier

for a listener to take an explicit "they' via Jan to Jan's family

than it was to take "one" to an implicit "they* then via Jan

through Jan's family to a selection from that set. The

boundaries of the inferential processes that might make such

associated "natural set" entities available have not been

investigated. More important is the fact that as far as I can

tell, no one has as yet really investigated the actual

distribution of one-anaphora to look at the range of inferential

processes assumed to be at -.ork in such cases. Whatever the

results of such investigations may be though, the unified

approach to dealing with definite plural and "one" anaphora has

the joint advantages of elegance and computational efficiency.

47
I am aware that for some speakers it seems perfectly fine to

say "You know, the one who broke his ankle?". In that case, it
would seem that "one" is selecting from the generic set of of
people named "Jan' that the speaker presumes the listener to know
(and possibly confusel). How proper names evoke generic sets is
an object of further study.
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5.3.2 Notes on implem, r-ations

Following are some notes on what is involved in augmenting a

* natural language understanding system for English with the

ability to deal successfully with one-anaphora. I assume a

RUS/PSI-KL-ONE type of frontend -- that is, a syntactically

driven parser that has access to a representation of the

syntactic-semantic patterns understood by the system.

The first point concerns how noun phrases (NPs) headed by

"one" can be handled by a syntactic processor that wants to use

such syntactic-semantic patterns for guidance and by a semantic

processor that wants to use such patterns to assign (and perhaps

later refine) interpretations. Clearly one does not want to have

separate patterns for NPs headed by *one" and for NPs headed by

"real" nouns. This would have to be the case if those patterns

were only accessible through their head noun. However in PSI-KL-

ONE, one identifies whether an NP matches an interpretable

pattern incrementally, using information from adjectives,

prepositional phrases, relative clauses, etc. as well as from the

head. This identification makes it possible to interpret NPs

headed by such relatively semantically empty nouns as "thing,"

"stuff," etc., as well as those headed by 'one".

The second point concerns the processing of definite NPs

headed by "one*, where those NPs may themselves be anaphoric.

One might infer that such NPs might have to be processed twice:

once to have the anaphoric "one' resolved, then again to
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determine what focused or otherwise unique discourse entity the

NP accessed. However, this is not the case. Rather,

simultaneously considering the constraints on the definite noun

phrase raised by the anaphoricity of its head and the

definiteness of the whole might simplify the problem of

interpreting it. And the problem of interpretation is

essentially the only thing at issue. Whether "one" is itself

actually resolved or not in the process seems irrelevant.

As an extreme example, consider the following alternative

sentence pairs.

D19-1 All the wines in David's cellar were given to him
by friends. The ones he got from Florence are back
there.

D20-1 All the wines in David's cellar were given to him
by friends. The ones from Florida gave him those
back there.

In the first pair, if it is assumed because of both the definite

article and the one-anaphora that "the ones he got from Florence"

accesses a subset of some focused set, then it should be one that

can be restricted to being gotten from Florence. One can then

apply this test to the focused sets to find the most reasonable

one. In the second pair, the same type of assumption can be

made: the definite NP accesses a subset of some focused set that

can be restricted to being from Florida and being capable of

giving something. In neither case need there be a separate

process of resolving "one."
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The third point concerns the use of syntactic information in

resolving one-anaphora. If and when a *one" anaphor is to be

resolved, such information can provide a basis for some useful

heuristics. For example, like verb phrase ellipsis (e.g., If

Wendy runs the Bonne Bell, I will too.0), one-anaphora seems to

be used often in parallel constructions (e.g., "If Wendy buys a

felt hat trimmed with ostrich feathers, I'll buy one with a

peacock plumel"). If the system is sensitive to syntactic

parallelism, information about such parallelism can be useful in

doing the resolution.

The final point concerns responsibility for resolving one-

anaphora. This responsibility does not belong to either

syntactic or semantic processing, but rather to discourse

mechanisms capable of deciding whether the "one" anaphor needs to

be resolved separately or else in the process of resolving a

definite noun phrase. During the resolution process discourse

mechanisms will, of course, make use of information from

syntactic as well as semantic processing.
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6. ABSTRACT ALGORITHMS AND ARCHITECTURES

by W. A. Woods

One component of the BBN project in Knowledge Representation

for Natural Language Understanding has been the exploration of

specialized algorithms and architectures for the kinds of

symbolic operations that would go on in intelligent language

understanding systems and other knowledge based inference

applications. This section presents work on specialized abstract

architectures for parallel marker passing algorithms.

Specifically we are concerned with discovering algorithms that

can exploit high degrees of parallelism to permit real time

processing of sophisticated natural language communication. One

class of such algorithms involves a computerized approximation of

some of Ross Quillian's [491 ideas about how human memory works.

This is one of the abstract architectures that we have been

considering, and the one that I will discuss here.

Quillian was concerned with how it is possible for people to

put together a number of rather minor facts, no one of which is

strongly suggestive, to come up with a hypothesis that integrates

them into a coherent whole. He was interested in how the context

of one's previous discussions can influence the way that one

resolves ambiguous word senses (e.g., "tank" as a gas tank or as

a military vehicle, depending upon what has previously been

discussed), and he was concerned with how a person can

j (subconsciously and almost instantaneously) come up with a
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semantic relationship between almost any two concepts. He was

also interested in how the processing of such semantic

associations manifests itself in human performance (for example,

semantic associations between Spain and Mexico apparently affect

the reaction time required to judge that sentences such as

"Madrid is Mexican" are false).

Quillian's theory of such phenomena was that wavefronts of

"spreading activation" passed through one's memory (a semantic

network) and that "semantic intersections" of such wavefronts of

activation accounted for many of the phenomena observed in human

mental processing.

Quillian's work was computerized to some extent (50] but

never fully developed. Scott Fahlman (24] has attempted to

extend Quillian's idea in a slightly different direction

namely, if one had a machine with abilities such as those

Quillian attributes to the human brain (i.e., an ability to pass

waves of activation), how would one program it to perform a

variety of knowledge base related inferences (such as attributing

properties to instances of a class or finding all instances of a

class with certain attributes). He uses a particular machine

design consisting of a central machine with a large network of

active memory elements; each element is able to store a small

number of marker bits and respond to broadcast commands to

propagate markers to other memory elements to which they are U
connected. In this context he has developed a number of

algorithms for various kinds of inferential processing. 3
190
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I
Fahlman's machine, however, is still not capable of many of

1 the tasks that Quillian envisioned. For example, Quillian's

I account of how one's context influenced his subsequent

interpretation of ambiguous words assumed that "activation" from

Iprior discussion remained associated with a Concept for some time
after its discussion and that a choice between two Concepts

I underlying an ambiguous word would be made in favor of the

i Concept with the higher residual activation. The Fahlman

machine, however, has only a small number of marks, which must be

constantly recycled; therefore, it would not be able to account

for such behavior using marker bits as the traces of activation.

Moreover, the Fahlman machine, while permitting considerable

parallel processing in the propagation of markers, still'requires

the central processor to be devoted to a single function at a

time, coordinating all of the marker propagation to a single

purpose. He cannot independently pursue two different hypotheses

at the same time. Quillian's vision, or at least my

extrapolation of it, would permit marker passing processes to be

working on separate parts of an overall solution to a problem, or

even alternative solutions to a problem simultaneously. This

kind of processing requires a much larger number of marks, in

fact a number that is effectively open-ended (in somewhat the

same way that a computer's finite memory is considered open-

ended, although it is finite in actuality).

I have been exploring a class of parallel algorithms that is
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somewhat similar to Fahlman's, except that the number of marks is

large - in the thousands or greater - and can he used to

coordinate the activities of a large number of alternative

inferential operations that can be pursued in parallel. I

visualize these algorithms being used in operations such as

recognizing a scene, parsing a sentence, recognizing the intent

of an utterance, recognizing a standard situation in a planning

task, recognizing an instance of something of importance (as in

an alerting system), and recognizing instances of counterevidence

for hypotheses in learning systems. All of these applications

and many other similar ones that occur throughout applications of

artificial intelligence, have the characteristic that potentially

many rules, patterns, templates, or whatever need to be matched

against the situation, so that the better matching ones can be

discovered. Moreover, in general, the situation involves not

just the discovery of one instantiated pattern, but rather the

"parsing" of the situation into a constellation of related

structures according to known rules of composition, just as

sentences are parsed into overall structures of related phrases.

I refer to such processes as "high-level perception" or

"situation recognition."

6.1 Parallel Algorithms for High-Level Perception

Most successful parallel processing architectures have

resulted from designing an architecture to support some specific

class of algorithm that is known to be important for some useful
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class of problems, but computationally expensive. Examples are

Fast Fourier Transforms (for signal processing applications) and

Key retrieval for associative memory processors. The former has

turned out to be immensely important for a variety of signal

processing applications, while the latter turns out to be

extremely useful for storage management in virtual memory systems

and presumably has many other useful applications as well.

However, contrary to what one might have expected, the

intuitive attractiveness of an associative memory for various

kinds of Artificial Intelligence applications and other

sophisticated symbolic processing applications has not resulted

in the widespread use of associative processors for these

applications. The reason for this, I believe, is-that the kinds

of retrievals required for most sophisticated applications are

not merely direct retrieval of a known key, but rather the

discovery of a stored item that matches a complex pattern. Some

associative processors permit patterns that can be expressed as

"don't care conditions' on certain bit positions in the key, but

this is not nearly sufficient.

I believe that the problem of high level perception or

situation recognition is sufficiently central to a wide range of

artificial intelligence applications to make it appropriate for

special architectural treatment. Moreover, it appears that some

version of Quillian's spreading activation ideas may provide a

method for obtaining real-time performance in such tasks.
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Appropriate algorithms and specialized hardware for such

operations hold promise for significant improvements in elapsed

real time required to perform complex intelligent computations in

knowledge-based systems.

The problem of high level perception or situation

recognition is to find all of the patterns in a data base of

pattern schema that are satisfied by a given input, where the

class of possible patterns is as general as possible. This basic

recognition problem is a fundamental "~inner loop" operation in

almost all sophisticated *intelligent" symbolic processing

applications, including language understanding, visual

perception, medical diagnosis, mechanical inference, robot

problem-solving, automatic program synthesis, and the general

class of knowledge-based systems. The efficiency of this basic

process is critical to any rule based system that is to operate

with a large and sophisticated set of rules.

6.2 Situation Recognition Algorithms

As discussed above, in a system whose behavior is driven by

a large set of rules, a major inner-loop operation is the

determination of the set of rules that are applicable to a given

situation. For sufficiently small sets of rules, this can be

done by considering each rule in turn and matching its conditions

against the current situation (e.g., matching a production rule

against the contents of a specified set of registers). For

larger sets of rules, this approach becomes impractical.
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I
For a straightforward set of production rules, an efficient

means of finding matching rules is to use a decision tree made up

of the various tests that occur in the patterns of the production

rules, and to store a list of the corresponding rules at each of

the leaves of this tree. This method significantly decreases the

computation for determining the matching rules.

As the number and complexity of the rules increase, the

decision tree method faces two alternative strategies. Either

the decision tree can be interpreted as a deterministic automaton

(in which only a single path through the tree is followed), or it

can be interpreted as a "nondeterministic" automaton (in which

alternative paths through the tree can be explored

simultaneously).

Woods [75] presents an analysis of these options in which it

is clear that the deterministic decision tree is impractical. It

also points out that the nondeterministic decision tree can be

viewed as a special case of an ATN, and that some generalizations

of the notion of nondeterministic decision tree in the directions

of an ATN have a number of advantages for organizing systems of

production rules. Of the three options (separate matching of

each rule, deterministic decision trees, and nondeterministic

decision trees), the nondeterministic decision tree seems clearly

superior to the other two. It involves fewer elementary

measurements than the straightforward testing of each rule in

turn, and in some cases could reduce the number of evaluations
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from order n to order log(n). Moreover, the storage costs are no

greater and could be less than that of the direct representation

of each rule. Both the direct evaluation of each rule and the

nondeterministic decision tree permit vast amounts of potential

parallelism for systems with large numbers of rules.

The observation that the nondeterministic decision tree is

essentially an ATN with no pushing and no registers raises the

possibility that one might be able to use more complex rule

patterns, or have greater flexibility for compact expression of a

total collection of rules, by generalizing to unrestricted ATN's

and making use of pushing and register setting. This is in fact

the case. Conventional production rule systems assume that the

pattern parts of the rules are essentially "flat" Boolean

combinations of simple measurements on the current state. They

do not provide a significant capability to create the equivalent

of subroutines that operate on some subset of the situational

parameters and may be common to a number of different rules. By

the use of factoring, pushing, and a device analogous to well-

formed substring tables, it is possible to make constellations of

tests into subroutines that need only be executed once, even

though they may be used on several different paths through the

nondeterministic network. The use of registers will then permit

a computation path to keep a record of the results of such

subroutines. The use of registers can also permit the merger of

two similar parts of the network into a single structure, with

the differences between the two kept in the registers.
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The above analogy to ATN grammars may seem strange to those

I accustomed to thinking of grammars only as devices for parsing

strings of symbols. However, the ability to do arbitrary tests

on an arc permits an ATN to be used essentially as a universal

nondeterministic computing machine. This ability has been

partially formalized in Woods [78] into a generalization of ATN

grammars called a "Generalized Transition Network," or GTN. A

GTN permits the same kind of nondeterministic computation as an

ATN, but is generalized to analyzing an arbitrary "perceptual

domain." In a GTN, one characterizes the situations that can be

induced from a set of rules, and then associates the right-hand

sides of the rules with the situations in which they should be

executed. Viewed in terms of GTN's, the problem of determining

which rules to apply to a given situation is equivalent to

parsing that situation into a characterization, which then

determines which rule actions are applicable.

Once this perspective is taken, it becomes clear that the

use of a GTN to characterize situations also permits a more

extensive classification of possible interactions among sets of

simultaneously matching rules than merely a set of matching

rules. For example, if one rule has a more specific pattern than

that of another rule, then whenever the first rule matches, the

second rule will also. If the rules are taken as merely a set of

rules, then these two rules will compete with each other in the

cases where the more specific rule matches. In the GTN

formulation, it is possible to indicate that in certain
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situations one rule is to take precedence over another, while in

others the effects of the two rules are to be combined, and in

still others the rules should be considered as competing

alternatives.

A previous report [78] discusses motivations for introducing

mechanisms of inheritance into the specification of a GTN for

situation-recognition applications. A structured inheritance

network such as KL-ONE [10, 11] can be interpreted as specifying

a GTN that provides such an inheritance mechanism and recognizes

occurrences of the concepts described in the network. That is, a

given Concept with a particular set of Roles and structural

conditions can be thought of as having an associated GTN (not

necessarily explicitly constructed) whose states are

characterized by subsets of the Roles that have been filled and

whose transitions correspond to filling an additional Role. Such

a network can be used as a "taxonomic lattice" [74] to organize

"advice" to be acted upon in different situations. Such a system

has a number of advantages over conventional production rule

systems, as I have discussed above.

One can imagine a process that simultaneously attempts to

parse an input into all of the possible Concepts that are known

to the network. However, what one would really like to find are

the most specific Concepts in the inheritance network that can

parse the input (the more general Concepts will then be inherited

automatically). Thus an important algorithm for situation
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recognition is an algorithm that takes a given input situation

and finds the most specific Concepts in the system's taxonomy

that are satisfied by the input situation. It is algorithms for

such operations as this that we are searching for.

6.3 An Abstract Marker Passing Engine

The abstract architecture that I have been exploring

consists of a central controller and a collection of processing

nodes, each of which contains a certain amount of permanent and

scratch memory. Each node is connected to some number of

neighbors by a communication channel called a link. A node can

pass a message to another node along the link without contention

with other communication links, subject only to the contention of

several nodes simultaneously trying to send messages to a single

destination. The central controller can broadcast messages to

all nodes, and nodes can send messages to the controller through

a contention network that resolves competition for the

controller's attention according to priorities associated with

the messages.

This architecture is superficially similar to that of

Fahlman, although we hypothesize a more powerful node than he

does, as well as a greater ability for parallel, asynchronous

activity without the detailed sequential supervision of the

central controller. We will use the capabilities of the

controller to regulate and modify the activities of the nodes and

to make "policy" decisions on courses of action.
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We assume that the nodes of such a machine are used to

implement a taxonomic network, as in KL-ONE, with an individual

processor node for each of the KL-ONE Concepts, Roles, and

Structural Descriptions (this is for the abstract machine

architecture - a real implementation might use a single processor

to simulate some number of these abstract processing nodes).

Links of the architecture will correspond to the various kinds of

KL-ONE links. One can think of the architecture, then, as a KL-}

I ONE network with a rudimentary processing ability at each of its
nodes and an ability to send messages along its links, plus the

ability for the nodes to communicate with the central controller.

The communication between nodes in this architecture will

take the form of messages of a particularly constrained format,

somewhat comparable to that of a machine instruction for a

computer with a two- or three-address instruction format. In the

current conception, a message will consist of a finite state

propagation code, a priority number, and one or two fields

containing bit patterns called "identifiers.* The propagation

code will be used to govern the kind of operation that will

happen when a node receives a message (e.g., there can be a

propagation code for following SuperConcept (Superc) links and

marking nodes along such a chain). The identifiers are bit

patterns assigned by the central controller to different tasks

and are used to "color" different waves of activation that are

simultaneously advancing through the network so that they can be

kept separated and associated with the tasks that they are
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performing. Marking a node will consist of storing a marker at

I the node consisting of a finite state status code, one or two

I identifiers, and a priority code or "activation strength."

The priority code associated with a mark on a node can serve

I several purposes depending on the status code. These include:

0 to affect the priority of messages generated by
collisions of other markers with this one

o as a time constant for an age counter that keeps track
of how long a mark has been present on a node and then
forgets it after a specified period

o as a measure of the goodness of a match between the
criteria for some concept and the external evidence
being used to hypothesize an instance of it

o as a regulator of the speed with which a wave of markers
propagates through the network by specifying a number of
cycles that a message should wait after being sent to a
node before having its effect

The ful2' range of uses of the activation strength parameter has

yet to be worked out. It may eventually be necessary to

hypothesize several distinct priority fields for simultaneous

1 specification of several of the above behaviors.

We will make the following assumptions:

1. The system will contain a finite number of identifiers
(probably numbering a thousand or more) that can be
associated with the nodes of the network in a number of
different ways (indicated by a status code in a marker

stored at the node).
2. A node may hold a number of markers simultaneously.

I3. Markers can be propagated through the network by means
of messages whose propagation code governs the route of
the propagation, the kind of markers that will be
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stored at nodes, the detection of "intersections" with
other markers stored at nodes (a la Quillian's
"semantic intersections"), and the generation of
messages as a result of such intersections.

4. A node can request an identifier from a list of
48

available ones managed by the central controller.

5. A node can send a message to the central controller.

6. The central controller can broadcast a message to all
49

nodes of a given type.

7. A node can count cycles after a message has been
received and execute the effect of a message after a
specified time delay.

In place of addresses, this machine will use the identifiers

discussed in assumption 1 above, which will be considerably fewer

in number than the number of nhodes in the memory structure.

Identifiers can be reused for different purposes at different

stages of a computation, just as registers and temporary

variables are used in conventional programming. However, instead

of storing data or pointers to data in registers in a central

processing unit, markers will be attached to the data in the

48
This may require freeing up and recycling an old identifier -

garbage collection is an open topic in this architecture.

49
Each type could have a separate broadcast channel, or each

node could have an automatic detector that ignores broadcast
messages whose type is different from that of the node. The
system would have a small number of types (say from 1 to 6). In
addition to setting and clearing markers, this channel might be
used to reprogram the nodes by specifying a program in some
microprogramming language that defines the effects of the
different propagation codes.
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memory nodes themselves, indicating the status of the data and

I the task for which it has that status.

For example, if a marker is put on a node with a status

called OWN, its identifier can be used as a temporary handle on

the node so marked - i.e., the node could respond to broadcast

requests for the owner of that identifier. Coupled with the

ability to respond to broadcast requests, this use of markers

provides a way of implementing a selective addressing scheme,

which obviates the need for a node to have an address decodable

as a pointer in order to access it. For large semantic networks,

fewer bits will be required for such markers than would be

required for equivalent pointers, and this in turn will reduce

the number of bits of communication required among nodes for

various kinds of algorithms.

This use of markers as node handles to hold onto

intermediate results, as opposed to using temporary registers or

variables to store pointers to addresses, can not only reduce the

bit rate of communication, it can potentially remove some

contention from communication channels. Instructions to mark

nodes can be broadcast without requiring that pointers to the

I marked nodes be returned to registers in the central processor.

*This use of markers also has the advantage of permitting the

1 equivalent of multiple (nondeterministic) setting of registers by

~ 3 letting a given marker be assigned to several nodes. Subsequent

broadcast instructions to perform operations on the node(s) so
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marked will automatically be performed in parallel for all

possible values of this "nondeterministic variable."

The use of markers instead of registers thus has a number of

advantages for realizing the potential parallelism of high level

perception processes:

1. It reduces the communication bottleneck that occurs in
a memory access when a pointer is transferred from an
arbitrary point in memory into a central register. An
operation to move the "contents" of one marker to
another consists of merely attaching an additional
marker to those cont,-nia, without the necessity of
placing a pointer to those contents into a central
register and then storing the contents of that register
in another place'

2. It permits the s4,-'taneous assignment of different
values to the %&&.e marker and the parallel computation
on the differeit hypotheses that correspond to those
different values. For example, if one wants to
determine if any Niode with some condition A also has
condition B, one can arrange all nodes with condition A
to be marked with some marker m, and then
simultaneously launch the computation for condition B
for all nodes marked mn.

3. Finally, since the number of identifiers is smaller
than the number of nodes, the messages being passed in
such processes can be smaller than the corresponding
messages using pointers would be.

Another use of markers is to construct temporary connections

between different nodes in the network. For example, one can

take the simultaneous presence of a marker on node A with

identifier m and status SOURCE and a marker on node B with the

same identifier and status DEST as a vi±rt.ual link from A to B. If

one wants to assign such a link specific properties, one can

associate some node M with that link by assigning it a marker
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with the same identifier m and status OWN, and then associate

those properties with that node. Such virtual links make it

possible to build up short-term memory representations of

potential network structure that may or may not be eventually

incorporated into long-term memory. Such short-term "scratch"

structures can be used in hypothesizing alternative

interpretations of input sentences, planning future actions,

making internal inference steps, etc. If nothing is done to make

such virtual links permanent, they can be made to disappear when
50

their marks become sufficiently old and are collected.

Pairs of identifiers can be associated with nodes to

indicate some connection between two tasks or to detect and

respond to "intersections." For example, a marker with a pair of

identifiers ml and m2 and status R,S-TRANS (referred to as a

"TRANS" pair) can be used to indicate that if a node receives a

marker with identifier ml and status R, it should send to
51

itself a marker with identifier m2 and status S. Such a TRANS

marker can be left on a node by one spreading activation

wavefront and activated by the appropriate marker from a second

50
Markers can be aged in at least two ways - either by the

central controller or by including self-destruct clocks with the
markers at the nodes.

51
The notion of a node sending a message to itself is distinct

from the notion of storing a message in that it will cause the
testing of all of the same propagation rules as if the message
were received from somewhere else. It need not actually tie up
the communication medium used to connect nodes together, however.
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wavefront to cause a new wave of propagation to begin from the

marker created by the interaction of the two.

Many applications of marker passing will be for problems of

search through a network. In such cases, there may be priorities

associated with alternative hypotheses, and for this reason one

* may want to associate priorities with messages being passed along

the links in the network. For example, such priorities might be

j used to score the relative likelihoods of different possible

semantic interpretations of a sentence. The priorities could

then govern the access of the individual marker propagations to

*bottleneck resources such as requests from the central

controller. The priorities could also affect the passage of

marks through congested regions of the network by giving

precedence for service at a node to higher priority markers. The

use of priorities associated with a marker could thus affect the

speed of propagation through the network and serve automatically

to adjudicate any competition for machine resources among

competing hypotheses in a search. As another example, higher

priorities could be used on certain kinds of "cancel" markers in

order to catch up with and terminate computations that have

already been initiated but are subsequently discovered to be

unnecessary, because of the success of some other subcomputation.

To illustrate more concretely the kinds of virtual

structures that can be built with markers, suppose that as a

possible interpretation of a part of an input utterance, we
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wanted to represent the proposition that the ship Enterprise is

located in Oceana, Virginia. Let us suppose that Concept nodes

contain enough internal memory to store n-tuples of identifiers,

with some association (either explicit or implicit) between the

positions in the n-tuple and the Roles of the Concept. These n-

tuples can be used to store temporary individuators of the

Concept involved. The first component of the n-tuple,

corresponding to the "whole" Role that stands for an instance of

the Concept as a whole will contain a unique identifier to be

used as a handle on the temporary individuator being constructed.

The remaining identifiers will be the identifiers for the

Concepts that are to be used as the fillers for the respective

Roles. Then, assuming that the Concepts [Enterprise] and

[Oceanal have already been marked as owners of the identifiers ml

and m2, respectively, we can represent the Enterprise being in

Oceana by an n-tuple (m3 ml m2) stored under the Concept [a ship

being located at a place], where ml is associated with the [ship]

Role of the Concept, and m2 is associated with the [place] Role.

The identifier m3 can now be used as a handle on the hypothesized

individuator [Enterprise being located in Oceana]. If it is

later decided to make this information a permanent part of long

term memory, a process can be invoked to create a new

individuator node whose SuperConcept is the [a ship being located

at a place] node, and whose [ship] Role is filled with

[Enterprise], and whose [place] Role is filled with [Oceana].

The configuration of markers discussed here is shown in Figure

3 14.
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FIG. 14. *THE ENTERPRISE IS LOCATED IN OCEANA." VIRTUAL
INSTANCE REPRESENTED BY VECTOR TABLE.

A possible way of implementing the n-tuples with

correspondences to Roles would be to use nodes in the network

that are exactly like individuator nodes, but without any Roles

filled in. The virtual filling of these Roles could be done with

a marker that specified the identifier of the Role filler. Each

generic Concept could have a certain number of such nodes,

reflecting the number of individuators of that Concept that might
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have to be independently hypothesized at one time. Additional

such individuators could be created whenever the number of them

was found to be insufficient. When a permanent individuator was

to be created, the temporary markers associated with the Roles of

one of these special nodes could then be replaced with actual Val

links to the Concepts that owned their identifiers, and a new

empty individuator of the generic Concept could be created

(either immediately, or later, when needed) to replace the one

that had just been used up. The configuration of markers for the

location of the Enterprise example using this convention is shown

in Figure 15.

Another possible realization of this kind of virtual

instance is to dispense with the explicit storage of n-tuples and

make the association of fillers with Roles by placing a marker

that pairs the virtual instance identifier and the Role filler

identifier on the Role being filled. A marker with status code

IND, associated with the generic Concept that the virtual

instance individuates, would be sufficient to indicate the

presence of a virtual instance and specify its identifier. That

identifier then could be used to find its Role fillers by looking

up the network for the Roles that Concept inherits and finding

the Role filler information at those Roles. The configuration of

markers for the location of the Enterprise example in this

convention is shown in Figure 16.

Figure 17 shows in dotted lines the virtual structure that

this configuration of markers encodes.
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FIG. 15. "THE ENTERPRISE IS LOCATED IN OCEAHA." VIRTUAL
INSTANCE REPRESENTED BY SPECIAL INDIVIDUAL CONCEPTS.
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FIG. 16. "THE ENTERPRISE IS LOCATED IN OCEANA." VIRTUAL
INSTANCE REPRESENTED BY IDENTIFIER/FILLER PAIRINGS ON
ROLES.
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FIG. 17. "THE ENTERPRISE IS LOCATED IN OCEANA." SHOWING VIRTUAL
INSTANCE INDUCED BY MARKERS.,
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6.4 Specification of Marker-Passing Algorithms

A marker-passing algorithm is expressed by determining a set

*I I of status and propagation codes to use for various purposes and a

* set of propagation rules for passing markers through the network.

An algorithm is then evoked by marking certain nodes in the

network with markers corresponding to its arguments and waiting

for the consequences of those initial markers to propagate

*1 through the net. The algorithm "returns" its results by leaving

certain nodes marked with a status indicating that they are the

results. In some cases, the central controller may then access

these results by broadcasting a request that they respond, but in

many cases, the mere fact that they have been marked will

constitute the input for another wave of marker propagation to

compute some other inference.

In actual practice on a real implementation, the propagation

and status codes would consist of bit patterns that would serve

to access the corresponding propagation rules, which themselves

would be specified in something like a machine instruction

format. However, for specification purposes by a programmer, we

would like a more readable surface notation. At this level, a

programmer will specify mnemonic names for the propagation and

status codes that he intends to use and will specify the

propagation rules by means of a simple pattern-action notation.

A sample propagation rule could be specified by a surface

notation something like:
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(WHEN A CONCEPT GETS SUB M
AND DOESN'T HAVE SUB M
STORE SUB M,
SEND TO SUPERC : SUB M),

which would specify that a message with propagation code SUB and

identifier M, when received by a node that did not already have a

marker with status SUB and the same identifier, would cause the

storage of a marker SUB M at that node and the sending of the

message SUB M to all SuperConcepts of that node. Such a rule

would be compiled into an appropriate microlanguage and stored at

each node in the network (or otherwise made available to each

node), or it could even be "wired" into the network nodes

directly in a machine whose inventory of propagation and status

codes was fixed.

6.5 The MSS Algorithm - An Example

To illustrate the use of marker passing algorithms to

exploit the potential for parallelism in knowledge based

inference, I will give here an example of a marker passing

implementation of the MSS algorithM, used to find the most

specific concepts in a KL-ONE network that subsume a given input

description. This algorithm is one of the basic inferential

operations on a KL-ONE network. It is used in assimilating new

Concepts into the network to determine what Concepts the new

Concept should inherit information from. The most specific

subsumers of a Concept are the Concepts to which it should be

linked by SuperConcept links.
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Assume that Concepts can be described by list structured

expressions characterized by the following simple BNF grammar:

<cspec> -> ( <cname> <rspec>*

<rspec> -> ( <rname> <cspec>*

where "cspec" stands for a Concept specification and "rspecw

stands for a Role specification. In this notation, a Concept is

specified by a Concept name (cname) designating a Concept in the

network under which the specified Concept will fit, and a

collection of Role specifications that the specified Concept must

have. Similarly, a Role specification will consist of the name

of a parent role, plus Concept specifications for value

restrictions that the specified Role must have. (This is a

simplification of the range of information that is actually

contained in a KL-ONE Concept, but the simplification makes for a

much more comprehensible example.) An example of a Concept

specification in this notation is:

(PERSON (HOBBY (GOLF)) (OCCUPATION (POLITICS)))

corresponding to the description "a person wh9se hobby is golf

and whose occupation is politics."

A Concept in a KL-ONE network is said to subsume such a

description if anything satisfying the description would be an

instance of that Concept. For example, the above description

would be subsumed by the Concept PERSON, and by Concepts for

people whose hobby is golf, people whose hobby is golf and whose
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occupation is politics, people whose hobbies include golf, people

whose hobbies are outdoor sports, etc. The subsumption

relationship between KL-ONE Concepts and descriptions can be

defined recursively by the conditions:

1. A Concept subsumes a set of cspecs (i.e., subsumes the
conjunction of those cspecs) if either (a) its name is
the same as the cname of one of those cspecs, (b) it
lies on a SuperConcept chain above a Concept that
satisfies condition a, or (c) all of its immediate
SuperConcepts subsume the set of cspecs and each of its
attached Roles subsumes some rspec from some one of the
cspecs.

2. A Role subsumes an rspec if it has or inherits the name
of the rspec and each of its value restrictions
subsumes the set of cspecs of the rspec.

This recursive characterization of subsumption can be used

as the basis of a strategy for assigning a given marker to all

Concepts in a network that subsume a given description. From

there it is a simple additional step to propagate a

"cancellation" marker up SuperConcept chains from each such

Concept, so that only the most specific subsumers have the

subsumption marker and not the cancellation marker.

Recalling the basic structure of a marker passing algorithm,

we need first to select a set of status and propagation codes to

serve various purposes and then set up a set of propagation rules

for passing markers through the network. For our example MSS

algorithm, we will make use of the following status codes:

SUB a status used to mark a Concept that subsumes a
cspec or a role that subsumes an rspec. The MSS
algorithm, when given a cspec and an identifier m
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as arguments, will arrange to assign a marker
with identifier m and status SUB to all Concepts
that subsume that cspec.

TEST a status used to mark a Concept that is a
possible subsumer of a cspec, depending on
whether its other SuperConcepts and its roles
satisfy the recursive conditions for subsumption.

FOUND a status that will be used to mark a Role that
has been determined to satisfy the recursive
subsumption conditions.

TRANS a status for a pair of identifiers indicating
that when a marker with the first identifier of
the pair is received, a marker with the second
identifier of the pair should be sent or stored.

The overall strategy of our MSS algorithm will be for the

central controller to start with an identifier cm assigned to the

particular cspec being processed (there may be any number of

simultaneous MSS operations being carried out at any given time,

and this identifier will be used to keep the separate

computations from mixing up their intermediate results). A

message consisting of the identifier cm with propagation code SUB

will then be broadcast by the central controller to the concept

named by the cname of the cspec. (This message will cause a

marker SUB,cm to be stored at that node, a message with the same

format to propagate up SuperConcept chains from that node, and a

marker with propagation code TEST and the same identifier to

propagate down SuperConcept chains.) An identifier rm will then

be chosen by the central controller (i.e., a new identifier is

requested from the central controller) for each of the rspecs of

the cspec. A message TRANS,rm,cm will be broadcast to all roles

in the network with the rname of that rspec. This broadcast sets
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up a condition that marks each such role as subsuming with

respect to cm if all of its VR's send a message FOUND,rm

(indicating that all the value restrictions of that role subsume

cspecs in the rspec associated with rm). Finally, for each of

the cspecs of the rspec associated with rm, MSS will be called

recursively on that cspec using the identifier rm, thus setting

up conditions so that all Concepts that subsume the cspecs of

this rspec will eventually be marked SUB,rm and will send a

message FOUND,rm to their inverse VR's (i.e., the roles of which

they are value restrictions).

An algorithm for injecting the necessary markers into the

network can be written as follows:

(DEFINE (MSS CM CSPEC)
(BROADCAST TO CONCEPTS WHOSE NAME =

(CNAME CSPEC) SUB CM)
(FOR RSPEC IN (RSPECS CSPEC) DO

RM <- (GETMARK)
(BROADCAST TO ROLES WHOSE NAME =

(RNAME RSPEC)
TRANS RM CM)

(FOR CS IN (CSPECS RSPEC) DO
(MSS RM CS) )))

where MSS is the function that initiates the MSS algorithm with

identifier CM for description CSPEC, BROADCAST is a function that

broadcasts messages to Roles and Concepts (possibly restricted to

have a specified name), and GETMARK is a function that requests a

new identifier from the controller.

In order for the signals injected by the above MSS function

to have their effect, appropriate propagation rules must be set
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up to pass markers along the links of the network, changing

status as appropriate, and interacting with other markers as

indicated by trans pairs. A set of marker propagation rules for

our example MSS algorithm is given below.

(WHEN A CONCEPT GETS SUB M
AND DOESN'T HAVE SUB M
STORE SUB M,
SEND TO SUPERC :SUB M,
SEND TO SUBC :TEST M,
SEND TO INVERSE VR :FOUND M)

(WHEN A NON MAGIC CONCEPT GETS FOUND M,
AND ALL OF ITS ROLE HAVE SUB M,
AND ALL OF ITS SUPERC HAVE SUB M
SEND TO SELF :SUB M)

(WHEN A NON MAGIC CONCEPT GETS TEST M, AND DOESN'T HAVE SUB M
AND ALL OF ITS ROLE HAVE SUB M,
AND ALL OF ITS SUPERC HAVE SUB M
SEND TO SELF :SUB M)

(WHEN A ROLE GETS TRANS Ml M2,
AND DOESN'T HAVE TRANS Ml M2
STORE TRANS M1 M2,
SEND TO SUBROLE :TRANS Ml M2)

(WHEN A ROLE GETS FOUND Ml,
AND HAS TRANS Ml M2,
AND ALL ITS VR HAVE SUB Ml
STORE SUB M2,
SEND TO ITS CONCEPT :FOUND M2)

(WHEN A ROLE GETS TRANS Ml M2,
AND ALL ITS VR HAVE SUB Ml
STORE SUB M2,
SEND TO ITS CONCEPT :FOUND M2)

This set of propagation rules, together with the above MSS

function for injecting markers into the network, will cause all

those Concepts in the network which subsume a given cspec to be

marked with the identifier assigned to that cspec in status SUB.
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52
The restriction to non-MAGIC Concepts in two of the

clauses above is necessary to block the apparent subsumption of a

cspec by Concepts whose definition is not totally indicated by

its Roles and SuperConcepts. The placement of a new Concept

under a MAGIC Concept cannot be done by an automatic MSS

algorithm, since some additional source (the "magic*) must be

consulted to determine whether the candidate Concept is really

subsumed by such a Concept. For example, a Concept for *mouse",

characterized in the network only as a mammal whose size is small

and color is gray, but associated with a recognition procedure

that could determine from a visual shape description whether an

animal was a mouse, should not automatically subsume any small

gray mammal. Concepts in KL-ONE can be marked as MAGIC to

indicate their dependence on such additional criteria. In this

case, the procedural shape recognizer would constitute the

additional (MAGIC) source of information necessary to determine

whether a Concept could be subsumed under the mouse concept and

would be the only procedure authorized to put a SUB marker on

that Concept. The placement of such a marker by this procedure

52
The notion of MAGIC concepts is used in KL-ONE as an escape

mechanism to indicate that some knowledge external to the
knowledge representation system is required to determine whether
an item should be classified under a given concept. Such
knowledge might be embedded in the operation of some low level
perceptual routine that makes assertions into the knowledge base,
or may reside in some external agent that must be consulted
before making such a classification. MAGIC concepts are somewhat
similar to the philosopher's notion of natural kind terms.
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could begin waves of marker passing, but no other marker passing

I wavefronts should be allowed to place a SUB marker there without

having verified the procedural conditions of the mouse

recognizer. This does not preclude other marker passing

algorithms than MSS from placing various markers on this Concept

(e.g., the mouse recognizer itself might be implemented as a

marker passing algorithm).

I Notice that any number of simultaneous MSS computations can

be going on in the network at any given moment, each with its own

identifier to keep it distinct from the others. In fact, the

above MSS algorithm creates this kind of simultaneous activity in

carrying out the MSS subsumption on the value restrictions of its

Roles.

* j The elapsed real time required by this algorithm to compute

a MSS is proportional to the longest chain of marker propagation

necessary to complete the computation, which is in general much

shorter than the number of machine instructions that would be

required to compute the MSS operation on a sequential machine.

j This necessary elapsed time depends on the depth of the taxonomic

lattice rather than on its breadth or on the total number of

IConcepts. Moreover, the depth of the lattice will tend to be on

the order of log(n) for a lattice of n Concepts, so one would
expect a real time requirement that grows on the order of the log

I of the number of Concepts in the network. (The time required for

MSS to inject markers into the network is negligible since it is
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bounded by the number of elements in the input cspec, which is in

general quite small.)

6.6 A Trace of the Example

To illustrate the operation of the above example of the M'SS

algorithm, consider the situation shown in Figure 18, which shows

a simple network for the concepts man, sports person, sport, and

golf, together with an initial marker assignment corresponding to

an invocation of the MSS algorithm for "a man whose hobby is

golf." (Asterisks mark the magic Concepts in the figure - i.e.,

the information that distinguishes a person from an arbitrary

thing is not shown in the network, nor is the information that

distinguishes a man from a person.) Figure 19 shows a history of

the marker passing that results from broadcasting the messages

SUB,M1 to the Concept M'AN, TRANS,M2,M1 to Roles named HOBBY, and

SUB,M2 to the Concept GOLF. Figure 20 shows the resulting

pattern of stored markers when the processing ceases. To get

from here, which is really just a marking of all Concepts that

subsume the target, to a marking of just those Concepts that are

most specific subsumers, would require some additional

propagation rules such as:
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THN

TRANS M42 M1

SUB M1

SUB M42

FIG. 18. INITIAL MARKER ASSIGNMENT FOR "A M4AN WHOSE HOBBY IS
GOLF."
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I
SUB Ml THING SUB M2

SUB MI PERSON

MAN SPORTS- SPORT SUB M2PERSON

SUB M1 SUB M1 TRANS M2 M1

SUB M1

G"'OLF SUB M2

FIG. 20. FINAL CONFIGURATION OF MARKERS FOR "A MAN WHOSE HOBBY
IS GOLF. "
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(WHEN A CONCEPT GETS SUB M
SEND TO SUPERC NMSS M)

(WHEN A CONCEPT GETS NMSS N:
STORE NMSS M)

(WHEN A CONCEPT GETS SUB M
AND DOESN'T HAVE NNSS M AFTER 10 CYCLES
STORE MSS M)

(WHEN A CONCEPT GETS NMSS M
AND HAS MSS M
CANCEL MSS M)

These propagation rules have the characteristic that if a

SubConcept of a Concept gets marked SUB,m, then that Concept will

be marked NMSS,m (for not most specific). If a Concept with

SUB,m does not get a message within 10 cycles informing it that

one of its SubConcepts is also a subsumer, then it will mark

itself with MSS,m - i.e., it will assume that it is a most

specific subsumer. In doing so, it will introduce some chance of

making an error caused by late discovery that some SubConcept is

a subsumer. The chance of error can be reduced by increasing the

delay before making the MSS assumption. In any case, the last

propagation rule will eventually correct any such false

assumptions as the more specific subsumers are found.

6.7 Simulating and Debugging Marker Passing Algorithms

In order to explore the Concept of marker passing described

above, we have implemented a simulator that runs on a sequential

machine and records the propagation of markers through the

network. One can then inspect this record of marker propagation

to gain an understanding of the functioning of such algorithms.
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Formulating and debugging algorithms of this type is extremely

difficult and qute different from conventional methods of

programming. Accordingly, it appears necessary to provide the

programmer with specialized tools to facilitate this task. In

particular, it appears necessary to have a record of the history

of marker events that lead to the creation of any given marker.

We expect that various graphics displays of marker propagation

will help in understanding the operation of marker passing, but

we have not yet implemented any such graphics tools.

At the moment, our debugging tools are limited to a display

of waves of marker activation by time cycle, a display of

causally related chains (and trees) of marker propagation, and a

display of the network with its resulting marker configuration.

Inspecting these displays to determine what is happening with a

marker passing algorithm is only slightly better than looking at

core dumps. It is a substantial research task to discover better

ways of visualizing what is happening.

6.8 Discussion

There are a number of problems that remain to be worked out

I in the specification and use of such algorithms. One of them is

knowing how long to wait for the answer to develop. As a maximum

criterion, one could wait until the network reaches a stable

state, at which time all of the appropriate nodes will have been

marked. However, in those cases where the results of this
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computation are to be passed on to other marker-passing

algorithms, it is not necessary to wait for the answer; one can

merely set up the propagation conditions so that as each node is

marked as an answer, it automatically triggers the propagation of

marks for the next computation to use that result. It is

difficult to get an intuitive appreciation for the behavior of

such a program, but the general characteristic would be that the

overall answers to macroscopic questions would be found as soon

as possible, starting each subordinate computation as soon as its

arguments were available. Final answers could then be reported

to the central controller by a request that could be triggered by

a node when it received a marker with a particular status.

One difficult problem in the use of such algorithms, which

is a variation of the "how long to wait" issue, has to do with

the treatment of negation. For example, if we want to set up a

condition so that all of the nodes that are marked SUB,ml and do

not have a SubConcept that is also marked SUB,ml (i.e., the most

specific subsumers) will be marked MSS,ml, we have to decide

under what circumstances the negative condition will be assumed

to be satisfied. There are at least three ways to deal with such

conditions. One is to wait a specified amount of time for the

contradicting marker to arrive to cancel the negative condition,

and if no such marker arrives in a reasonable amount of time, to

consider the negation satisfied. Another is to arrange a

separate set of marker propagation conventions that will pass

explicitly negative markers indicating that a condition is known
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not to be satisfiable, and thus enabling the negative condition.

I A third is to make possibly false conclusions that can be

j canceled later when they are found to be false, as in the MSS

F example above.

There is probably need for all three kinds of negation for

j various operations in such networks. The first can be handled by

the countdown clock provisions at nodes. The second can be done

I by encoding the negative information using a status code NOT-SUB

which will be assigned to a Concept that is proven not to subsume

the cspec, and then using the presence of NOT-SUB rather than the

absence of SUB as the condition in the rule.

6.9 Conclusions

In this chapter, we have discussed the advantages of

parallel implementation of nondeterministic algorithms, we have

outlined the basic architecture of an abstract marker passing

machine for exploiting such parallelism, we have given an example

of a marker passing algorithm for such a machine, and we have

discussed some of the issues involved in formulating such

algorithms. The approach is not to construct a general purpose

parallel engine for arbitrary calculations, but rather to

concentrate on a specific class of operations that have wide

applicability and high potential for parallelism. This class of

problems, referred to as "high level perception' or "situation

recognition," lends itself to a high degree of parallelism and is
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a central *inner loop" activity in such diverse AI applications

as: recognizing a scene, parsing a sentence, recognizing the

intent of an utterance, diagnosing a disease, recognizing a

standard situation in a planning task, choosing the next rule to

apply in a production rule system, recognizing an instance of

something of importance (as in an alerting system), and

recognizing instances of counterevidence for hypotheses in

learning systems.

All of these applications, and many other similar ones that

occur throughout applications of artificial intelligence, have

* the characteristic that potentially many rules, patterns, or

templates must be matched against the situation so that the

* better matching ones are discovered. Moreover, often the problem

is more like parsing than matching, in that it involves the

synthesis of otherwise unrelated stimuli into a coherent whole.

This is the class of operations that I have characterized as

*high level perception", and it is to these operations that the

parallel architectures being considered are directed.

Because the operations of high level perception are central

to a wide range of problems in Artificial Intelligence, because

they are the source of many of the computational delays in large

systems, because they lend themselves to a high degree of

parallel decomposition, and because the marker-passing

architectures described here hold the potential for realizing

this potential parallelism, the research program outlined in this
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paper holds significant promise for realizing real-time symbolic

computation for a large class of Artificial Intelligence

applications.
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7. PUBLICATIONSI

To conclude this report, we present here a list of

publications by the members of the research group. Also included

are presentations given by group members.
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R.J. Bobrow and B.L. Webber, "Some Issues in Parsing and
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R.J. Brachman and D.J. Israel, "Some Remarks on the
Semantics of Representation Languages" in "Data Modelling in
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preparation.

P.R. Cohen, C.R. Perrault and J. Allen, "Beyond Question
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report 4644, May 1981.

P.R. Cohen, "The need for identification as a planned
action," Proceeding.A of j h International Joint Confrence in
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D.J. Israel and R.J. Brachman, "Distinctions and Confusions:
A Catalogue Raisonne" in Proceedings of the International Joint
Conference on Artificial Intelligence, pages 452-459 . (IJCAI-81)
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in A.Joshi, I.Sag, and B.Webber (eds.), Elements of Discourse
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Artificial Intelligence (SIGART) of the ACM, May 1981, Chicago,
Ill.

R.J. Bobrow and B.L. Webber, Invited paper for panel:
Perspectives on Parsing Issues. 19th Annual ACL Meeting, June
29-July 1, 1981, Stanford University, Stanford, CA.

R.J. Bobrow and B.L. Webber, Parsing and Semantic
Interpretation as an Incremental Recognition Process, presented
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The Competence-Performance Distinction in Epistemology", paper
read to the Information and Computer Science Department
Colloquium at University of Massachusetts, Amherst, November,
1980.

D.J. Israel, "On the Computational Metaphor" (with Brian
Smith), talk given at a special session of the Society for the
Interdisciplinary Study of the Mind, held in conjunction with the
American Philosophical Association, December, 1980.

D.J. Israel, "What Philosophy of Mind Can(not) Learn from
AI", paper read to the Philosophy Department Colloquium at Tufts
University, January, 1981.

D.J. Israel, "Remarks on Self-Reference and Self-
Consciousness", comments on papers by Douglas Hofstadter, Raymond
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